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A B S T R A C T   

Background: Virtual reality surgical simulators are a safe and efficient technology for the assessment and training 
of surgical skills. Simulators allow trainees to improve specific surgical techniques in risk-free environments. 
Recently, machine learning has been coupled to simulators to classify performance. However, most studies fail to 
extract meaningful observations behind the classifications and the impact of specific surgical metrics on the 
performance. One benefit from integrating machine learning algorithms, such as Artificial Neural Networks, to 
simulators is the ability to extract novel insights into the composites of the surgical performance that differen
tiate levels of expertise. 
Objective: This study aims to demonstrate the benefits of artificial neural network algorithms in assessing and 
analyzing virtual surgical performances. This study applies the algorithm on a virtual reality simulated annulus 
incision task during an anterior cervical discectomy and fusion scenario. 
Design: An artificial neural network algorithm was developed and integrated. Participants performed the simu
lated surgical procedure on the Sim-Ortho simulator. Data extracted from the annulus incision task were 
extracted to generate 157 surgical performance metrics that spanned three categories (motion, safety, and 
efficiency). 
Setting: Musculoskeletal Biomechanics Research Lab; Neurosurgical Simulation and Artificial Intelligence 
Learning Center, McGill University, Montreal, Canada. 
Participants: Twenty-three participants were recruited and divided into 3 groups: 11 post-residents, 5 senior and 7 
junior residents. 
Results: An artificial neural network model was trained on nine selected surgical metrics, spanning all three 
categories and achieved 80% testing accuracy. 
Conclusions: This study outlines the benefits of integrating artificial neural networks to virtual reality surgical 
simulators in understanding composites of expertise performance.   

1. Introduction 

Virtual reality surgical simulators have been rapidly adopted as a 
more objective method of training and evaluating surgical technical 
skills [1,2]. The incorporation of haptic technology has resulted in 
increased positive learning outcomes [3]. The range of difficulty asso
ciated with spinal surgery has led to the development of novel spinal 
virtual reality (VR) simulators with haptic feedback [4,5]. These 

simulator platforms can deconstruct complex common surgical pro
cedures such as the anterior cervical discectomy and fusion (ACDF) into 
discreet steps allowing trainees to concentrate on specific technical skills 
in need of enhancement rather than those already acquired [5]. The 
ACDF requires learners to master a broad spectrum of surgical tech
niques and each of these components can be assessed and trained uti
lizing virtual reality simulators [5,6]. 

Virtual reality simulators collect enormous sets of data pertaining to 
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the psychomotor interactions of the user during the completion of the 
simulated tasks. Such data are often transformed into performance 
metrics that play an important role in assessing and training surgical 
trainees. Several studies have established the value of performance 
metrics in classifying individuals into the correct level of expertise and 
training individuals to improve their level of performance [6–11]. 

Artificial intelligence (AI) algorithms employing the vast data sets 
available from surgical simulators have been able to classify surgical 
expertise with greater granularity and precision than has been previ
ously demonstrated in surgery [12]. These algorithms have also pro
vided insights into the composites of surgical performance that 
differentiate levels of expertise [6,10,12]. Artificial intelligence can be 
described as the ability of computational algorithms to make “smart” 
decisions [13]. Machine learning, a subset of AI, is a term used to 
describe the ability of algorithms to make classifications or decisions by 
identifying and learning from hidden patterns within datasets, without 
the need for explicit instructions [14]. Machine learning includes both 
simple linear algorithms and more complex non-linear ones [14]. 
Deeper subsets of machine learning, such as artificial neural networks 
(ANNs), can correctly learn complex non-linear patterns within the 
given dataset. ANNs consist of a series of layers containing nodes or 
neurons. The layers are interconnected via the nodes that pass infor
mation through connections with different weights [14]. The algorithm 
adaptively learns the weights associated with connections between 
nodes in different layers to generate a better representation of the true 
model. When combined to virtual reality surgical simulators, the algo
rithm not only has the potential to increase the granularity of classifi
cation of surgical performance, but can also provide deeper insights into 
the impact of the different performance metrics on the classifications 
[14]. Most studies utilizing artificial intelligence with surgical simula
tors only exploit the ability of the algorithms to classify participants, 
while failing to account for the underlying reasons for the classifications 
or to quantify the relative importance of the performance metrics used in 
developing the model [14]. Nevertheless, recent studies applied 
one-layered ANN combined with the Connection Weights Algorithm to 
highlight the relative feature importance in classifying surgical perfor
mance [13,15–17]. The Connection Weights Algorithm, originally 
developed by Olden and Jackson [17], was used to understand and 
quantify the relative impact of each metric on the classification task in 
one-layered ANN. To the best of the authors’ knowledge, no prior studies 
implemented this algorithm on multilayered ANN. 

Thus, the objective of the study was to assess the ability of a multi
layered ANN algorithm to: 1) classify surgical performance on an ACDF 
virtual reality simulated scenario and, 2) identify the relative impor
tance of specific performance metrics in the surgical expertise classifi
cation in this virtual reality spinal procedure. In addition to establishing 
the effectiveness of an ANN algorithm in distinguishing surgical per
formance, the novelty explored in this study seek to validate a new 
adaptation of the Connection Weights Algorithm on a multilayered ANN 
to assess feature importance. 

2. Material and methods 

2.1. The virtual reality simulator & the simulated scenario 

This study utilized the Sim-Ortho VR simulat or developed by 
OSSimTech™ (Montreal, Canada) and the AO Foundation (Davos, 
Switzerland). The scenario simulated is the ACDF surgical procedure. 
The VR simulator exploits the use of 3D glasses and graphics from a 
gaming system to provide 3D visuals of the procedure [5,6]. This plat
form immerses individuals in an active and dynamic learning process 
providing instrument haptic and auditory feedback. 

The ACDF simulated scenario utilized in this study has been exten
sively employed by our group to assess surgical expertise. The simula
tion includes 3 animated steps (neck incision, placement of retractors, 
and fusion) and 4 deconstructed interactive steps (C4–C5 vertebral disc 

annulus incision, discectomy, osteophyte removal, and posterior longi
tudinal ligament removal) [5,6,18]. Each of the interactive simulated 
steps have been shown to have face, content and construct validity [5]. 
Prior to the start of the simulation, participants were made aware of all 
steps and instruments needed to complete the procedure via verbal and 
written instructions. No time limit was imposed on completing the 
simulated scenario. The current study focuses on the first interactive 
step which consists of performing a 2 cm transverse box incision 
exposing the disc annulus using a virtual No.15 scalpel. The second 
interactive step, discectomy, has been assessed by Mirchi et al. [6] and 
the third interactive step, osteophyte removal by Reich et al. [18] have 
been previously reported. 

2.2. Participants 

This study utilized participant data previously collected in a prior 
ACDF simulated scenario validation study [5,6]. Twenty-seven partici
pants were initially recruited to perform the virtual reality ACDF sce
nario. Since the simulator is optimized for right-handed individuals, 
data from left-handed participants were excluded. In the previous 
studies, data from post-residents with non-spine focused clinical prac
tices were excluded. However, since the first interactive step, C4–C5 
vertebral disc annulus scalpel incision was not dependent on the more 
complex remaining interactive steps it was considered appropriate to 
include data from the post-resident participants. Table 1 presents the 
demographics of the 23 participants. The participants were divided into 
three groups: A Post-Resident group (3 neurosurgeons, 2 spine surgeons, 
5 spine fellows, and 1 neurosurgical fellow), a Senior-Resident group (3 
PGY 4–6 neurosurgery and 2 PGY 4–5 orthopaedics residents), and a 
Junior-Resident group (3 PGY 1–3 neurosurgery and 4 PGY 1–3 ortho
paedics residents). Table 2 highlights the main differences between the 
groups based on previous experience, knowledge and comfort levels 
performing and/or assisting in an ACDF. The senior-resident group (PGY 
4 and higher) assisted in more ACDF surgeries and have a higher level of 
comfort assisting and performing an ACDF solo than the junior-resident 
group (PGY 1–3). The post-resident group ratings demonstrated expert 
textbook and surgical ACDF knowledge (median 5.0; range 4.0–5.0). 
This study was approved by an appropriate Research Ethics Board. All 
participants signed an approved written consent form prior to 
completing the simulation. 

2.3. AI analysis 

A systematic approach was used in integrating an ANN in classifying 
the virtual surgical performance. As illustrated in Fig. 1, the method
ology was divided into two main steps: Data collection & Preprocessing 
and Machine Learning Model Development. 

2.3.1. Data Collection and preprocessing 
During a simulation procedure, the surgical simulator recorded a 

Table 1 
Demographics of the post-resident, senior-resident, and junior-resident groups.   

Junior Residents Senior Residents Post-Residents 

No. of individuals 7 5 11 
Age (years) ± SD  27.4 ± 1.4  30.6 ± 2.3  44.2 ± 13.2  
Sex 

Male 5 4 11 
Female 2 1 0  

Level of Training Surgical Specialty 

Neurosurgery Orthopaedic Surgery 

PGY 1-3 3 4 
PGY 4-6 3 2 
Fellows 1 5 
Consultants 3 2  
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series of data relating to the participants’ use of the surgical tools. The 
collected data included variables such as position, time, and angles of 
the simulated surgical tools, as well as applied forces, removed volumes, 
and surgical tool contacts of specific anatomical structures. In total 66 
variables were collected throughout a simulation run. Subsequently, the 
recorded data were extracted and processed to generate surgical per
formance metrics that were used as a set of criteria to assess the per
formance of the participants in the virtual procedure. For example, 
position and time were combined to generate velocity metrics, forces 
and contact detection were used to determine the forces used when 
removing anatomical structures, and position and contact detection 
were used to determine the path length used while interacting with 
anatomical structures. A total of 157 metrics were initially generated 
based on expert opinion, publications that focused on surgical incision 
performance, and novel metrics derived from the data [19,20]. Subse
quently, all derived metrics data were normalized using z-score 
normalization. The generated metrics were assigned into one of three 
main categories: motion, safety, and efficiency. Data extraction, metrics 
generation and z-score normalization were done in Python (Version 3.7, 
OR USA). 

2.3.2. Machine learning model development 
Building any machine learning model requires a series of steps to 

ensure the development of an optimal and a generalizable model. As 
described by Fig. 1, three main steps were taken during the machine 
learning model development. At the very start, the data analyzed was 
split into training, validation, and testing sets. Since the dataset in this 
study contained underrepresented classes, a stratified split was used to 
ensure similar representation of all classes in all sets (Table 3). To pre
vent leakage of information from the testing set into the model devel
opment, all subsequent steps – feature selection and model training – 

were only performed on the training and validation sets, which 
comprised approximately 78% of the total dataset. Following the split, a 
z-score normalization was applied on the features. The normalization 
transformed the mean of each feature to a value of zero and mapped the 
rest of the values to be centered about the mean, assigning positive and 
negative z-scores for feature values above and below the mean, 
respectively. 

Feeding a large number of unimportant features into any machine 
learning algorithm would introduce noise and inefficiencies [15]. 
Hence, following the data split and before training the machine learning 
model, a sequential forward selection (SFS) algorithm was used to 
remove irrelevant metrics that may not be useful in distinguishing sur
gical performance. The SFS algorithm employs its own built-in machine 
learning model to determine the optimal subset of features. Starting 
from an empty feature subset, the SFS algorithm iteratively builds 
optimal feature subsets based on the performance of the built-in ma
chine learning model on the feature subsets. More specifically, at each 
iteration the SFS algorithm checks the relative performance of the new 
subset of features as compared to the previous iteration. The algorithm 
continues until all the features are added, and subsequently returns the 
optimal subset with the best performance. This study employed a 4-fold 
cross validation Neural Network model as part of the SFS algorithms for 
feature selection. The feature selection step reduced the features into 
nine final metrics as shown in Table 4. 

2.3.3. Building and training the ANN 
Following the feature selection step, a multilayer perceptron (MLP) 

artificial neural network was built and trained. A PyTorch framework 
was used to build and train the MLP model. The framework used was 
similar to a general framework as described by Paszke et al. [21] and 
demonstrated by Chintala [22]. The cross-entropy loss was used along 
with the stochastic gradient descent optimization with momentum al
gorithm (SGD with momentum) for model training. The ReLu activation 
function was used with the default Lecun weights initialization tech
nique as defined by the PyTorch built-in functions. To prevent over
fitting the model on the training set, early stopping was implemented 
using the loss obtained on the validation set as a stopping criterion. More 
specifically, training was stopped once the validation loss increased. The 
training algorithm built in this study saves a copy of the model param
eters when the validation loss is improved. It also saves a history of the 
training and validation accuracies and loss function value during 

Table 2 
Differences in previous experience, knowledge, and comfort level of the groups.   

Junior 
Residents 

Senior 
Residents 

Post- 
Residents 

No. of individuals in each group who: 
Have previous experience using a 
surgical simulator 

5 (71%) 4 (80%) 9 (82%) 

Assisted on an ACDF in the last 
month 

1 (14%) 3 (60%) N/A 

Performed an ACDF solo in the 
last month 

1 (14%) 1 (20%) 8 (72%) 

Medina self-rating on 5-point Likert scale: 
Textbook Knowledge of an ACDF 3.0 

(1.0–4.0) 
3.0 
(2.0–4.0) 

5.0 
(4.0–5.0) 

Surgical Knowledge of an ACDF 3.0 
(1.0–3.0) 

3.0 
(3.0–4.0) 

5.0 
(4.0–5.0) 

Comfort level performing an 
ACDF with a consultant in the 
room 

3.0 
(1.0–4.0) 

3.0 
(2.0–5.0) 

N/A 

Comfort level performing an 
ACDF solo 

1.0 
(1.0–3.0) 

3.0 
(2.0–4.0) 

5.0 
(3.0–5.0)  

Fig. 1. The study methodology consisted of two main steps: Data Collection & Preprocessing and Machine Learning Model Development.  

Table 3 
Stratified split of the dataset into training, validation, and testing sets.  

Classes Original 
Dataset 

Training 
Dataset 

Validation 
Dataset 

Testing 
Dataset 

Junior 7 4 1 2 
Senior 5 3 1 1 
Post 11 7 2 2 
Total 23 14 4 5  
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training. 
An MLP architecture consists of multiple interconnected hidden 

neurons within multiple layers as presented in Fig. 2. MLP optimization 
requires the tuning of several hyperparameters related to both model 
architecture and training. Model architecture hyperparameters include: 
the number of hidden layers and the number of hidden units. Model 
training hyperparameters for the MLP used in the current study (MLP 
with SGD) include: the learning rate and the momentum of the SGD 
algorithm. Table 5 presents a non-exhaustive list of potential values of 
each hyperparameter. These values were chosen based on best practices 
seen in literature when using the SGD learning with momentum algo
rithm in a multilayer perceptron neural network [23]. A semi-systematic 
grid search was conducted to explore the models that can be generated 
using the many different combinations of the presented hyper
parameters. The purpose of the grid search was to find the best per
forming models out of the combinations. Similar to the early stopping, 
the performance of the models on the validation set was used as a search 
criterion. 

Table 6 presents the best performing models found based on the 
search criteria in the one-layered, two-layered, and three-layered ANNs. 
As seen in Table 6, the two-layered network resulted in a better model 
performance on the validation set. Table 7 shows the chosen model with 
the best hyperparameters. Fig. 3 presents the training of the optimal 
model. After each training epoch, the model was tested on the validation 
set, generating the validation accuracy and loss. Early stopping was 
frequently used in training the models, the optimal model stopped 

training after 3000 epochs as the validation loss started to slightly in
crease (Fig. 3). 

The Connection Weights Algorithm, originally developed by Olden 
and Jackson [17], was used to understand and quantify the relative 
impact of each metric on the classification task. The algorithm was 
developed for one-hidden layer networks and assigns a distinct weight 
for each feature-class pair by summing the products of all the connection 
weights that relate an input to an output, as demonstrated by Fig. 4 and 
Equation (1). 

CWPx,z =
∑M

m=1
wxmqmz (1) 

In this work, the Algorithm was adapted to a multilayer neural 
network to calculate the Connection Weights Product (CWP) as recently 
suggested by multiple studies [24,25]. More specifically, this study 
adapted the algorithm to a two hidden layer network as demonstrated by 
Fig. 5 and Equation (2): 

CWPx,z =
∑M

m=1

∑N

n=1
wxnvnmqmz (2)  

Where CWPx,z is the connection weight product of an input metric x to a 
class output z, wxn is the weight connecting an input metric x to a first 
hidden layer neuron n, vnm is the weight connecting a first hidden layer 
neuron n to a second hidden layer neuron m, and qmz is the weight 
connecting a second hidden neuron m to an output z. As demonstrated in 
Fig. 5 and Equation (2), the new adaptation of the algorithm can be seen 
as computing and subsequently adding the original algorithm M times. 
As with the original algorithm, the CWP can attain both positive and 
negative values, outlining the relative contribution of each input feature 
to each output in both magnitude and sign. The sign of the CWP in
dicates whether a high or a low feature value results in a higher prob
ability of a certain class. CWPs can be further leveraged to obtain the 
relative importance of the features to each class by determining the ratio 
of the magnitude of a feature CWP to the sum of the magnitudes of all the 
features CWPs for that certain class. 

To further support the new adaptation of the Connection Weights 
Algorithm on a multilayer neural network performed in this study, 
feature importance was also evaluated using the permutation feature 

Table 4 
Nine final metrics resulted from the SFS algorithm used in this study. The metrics 
spanned all three categories.  

Metric 
Category 

Metric Description Metric 
Abbreviation 

Motion Maximum velocity in the Z direction vzmax  

Mean velocity in the Y direction while 
contacting the Nucleus 

vyNmean  

Safety Maximum force exerted on the Spinal Cord 
Nerves 

FmaxSCN  

Maximum force exerted on the Right 
Vertebral Artery 

FmaxRVA  

Volume removed of the Spinal Cord Nerves VolumeRemovedSCN  

Efficiency Contact time with the C4 Vertebra ContactTimeC4  

Contact time with the Left Posterior 
Longitudinal Ligament 

ContactTimeLeftPLL  

Contact time with the Right Posterior 
Longitudinal Ligament 

ContactTimeRightPLL  

Contact Length with the C4 Vertebra ContactLengthC4   

Fig. 2. A general MLP diagram showing the input layer, the hidden layers and 
the interconnected hidden units, and the output layer. 

Table 5 
Hyperparameters potential values.  

No. of Hidden Layers 1 2 3   

No. of Hidden Units 6 10 20 40 100 
Learning Rate 0.0001 0.0005 0.001 0.005 0.01 
Momentum 0.6 0.7 0.8 0.9 1  

Table 6 
The best performing models in each of the one-layered, two-layered, and three- 
layered ANNs.  

Hidden 
Inputs 
Per Layer 

Hidden 
Layers 

SGD 
Learning 
Rate 

SGD 
Momentum 

Validation 
Accuracy 

Validation 
Loss 

20 1 0.001 0.8 75% 0.56 
40 2 0.001 0.7 100% 0.33 
20 3 0.0001 0.8 75% 0.4  

Table 7 
Best performing model found within the grid search.  

Hidden Inputs Per 
Layer 

Hidden 
Layers 

SGD Learning Rate SGD Momentum 

40 2 0.001 0.7  
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importance method and subsequently compared to the results of the 
Connection Weights Algorithm. The permutation feature importance 
algorithm captures the importance of a feature by measuring the change 
in the model score after permuting that feature’s values [26,27]. The 
loss function along with the prediction accuracy were used in this study 
as a measure of the model’s performance. A feature is important if the 
model behaves poorly following the permutation of that feature’s 
values, whereas an unimportant feature would not cause the perfor
mance of the model to deteriorate significantly. This study used both the 
training and testing sets when implementing the permutation feature 
importance. In a sense, the permutation feature importance is similar to 
a sensitivity study used in a typical finite element analysis. 

3. Results 

3.1. Surgical performance metrics 

Surgical performance metrics generated for the incision component 
were divided into three categories: motion, safety, and efficiency. 
Initially, 157 surgical performance metrics were generated for each 
participant. Following the SFS (sequential forward selection) algorithm, 
only nine important metrics remained, as demonstrated in Table 4. 
Similar to the data from the discectomy but unlike the osteophyte 

removal study, the nine most significant metrics spanned all three cat
egories [6,18]. These nine surgical performance metrics were used as 
inputs to the developed ANN. More specifically, the trained model had 
the following architecture: 

3.2. Accuracy in classification of surgical performance 

The final model was trained for 3000 epochs (see Fig. 6). The clas
sification accuracies of the trained model are highlighted in Table 8 and 
confusion matrices (Fig. 7 (a) to (c)). A confusion matrix is a table that 
allows the visual analysis of the performance of an ANN. Three confu
sion matrices were generated – on the training (14 participants), vali
dation (4 participants), and testing sets (5 participants) – achieving 
accuracies of 100%, 100%, and 80% respectively. 

3.3. Surgical performance metrics importance 

Each input feature within an ANN has a certain impact on the 
response output of the algorithm. This study adapted the Connection 
Weights Algorithm to a multilayered ANN and subsequently compared 
the results to the permutation feature importance method. Table 9, 
Table 10, and Table 11 present the nine surgical performance metrics 
along with their CWPs and the corresponding relative importance for the 
post-resident, senior-resident and junior-resident groups. It is to be 
noted that the order of feature importance, presented by the relative 
importance column in the tables, varies for each class of surgical level. 
Table 12 and Table 13 present the permutation feature importance 
applied to the training and testing sets, respectively. Fig. 8 presents the 
learning patterns that are exhibited in each input feature. The figure 
presents the CWPs of each feature for the three surgical levels. 

4. Discussion 

4.1. Performance of the ANN 

The first objective of the study was to leverage an ANN algorithm in 
the assessment of surgical performance on an ACDF virtual reality 
simulated scenario. This study focused on the annulus incision step of 
the ACDF simulation, in which nine features were identified as the most 
important and subsequently utilized in the development of the neural 
network. The use of early stopping in model training helped in pre
venting overfitting. The utilized methodology was successful in devel
oping and training a two-hidden layer neural network that performs well 
on all three datasets (100% training accuracy, 100% validation accu
racy, and 80% testing accuracy). Due to the limited data size used in this 
study, the accuracy results on the testing set were within the acceptable 

Fig. 3. The performance of the chosen optimal model at each training epoch: (a) the accuracy of the model on the training and validation sets at each training epoch; 
(b) the value of the loss function on the training and validation sets at each training epoch. 

Fig. 4. Schematic of a one hidden layer network demonstrating the weights 
that connect the first input node to the first output node. 
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range. Analysis of the one misclassified individual revealed that the 
performance associated with this junior resident not only diverged from 
the junior group, but also resembled the post-resident performance in 
the most important features that were related to both the junior and 
post-resident groups (Table 9, Table 11, and Table 14). The participant 
had positive scores in the contact length (z-score of 0.43) and time (z- 
score of 0.95) with the C4 vertebra, and a negative score (− 0.34) for the 

Fig. 5. Schematic of a two hidden layer network demonstrating the weights that connect the first input node to the first output node. To simplify the illustration, the 
connection weights are broken into multiple schematics (a–d) by varying the last hidden layer m from 1 to M. 

Fig. 6. Model architecture of the final developed ANN model demonstrating the input surgical metrics, the number of hidden units and layers, as well as the 
output variables. 

Table 8 
Accuracy performance of the trained model on the training set, validation set, 
and testing set.  

No. of Training 
Epochs 

Training 
Accuracy (%) 

Validation 
Accuracy (%) 

Testing Accuracy 
(%) 

3000 100 100 80  
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maximum velocity in the z-direction. The z-scores specify the number of 
standard deviations the surgical performance is from the mean values of 
each feature. Thus, this individual used longer than average contact 
length and contact time with the C4 vertebra, while utilizing slower than 
average movements. Based on the CWPs, one interpretation is that these 
values might increase the likelihood of a post resident classification 
while they reduce the likelihood of a junior resident classification 
(Table 14). However, this interpretation might not directly hold true 
without additional analyses, such as the use of other feature importance 
algorithms as discussed in the next sections. 

4.2. Insights and surgical performance patterns revealed by the ANN 

The second objective of the study focused on revealing hidden 

Fig. 7. Confusion matrices highlighting the performance of the trained model on the: (a) training set, (b) validation set, and (c) testing set.  

Table 9 
Ranked surgical performance metrics with corresponding weights and relative 
importance for post-residents.  

Rank Category Metric Connection 
Weights Product 

Relative 
Importance (%) 

1 Efficiency ContactLengthC4  8.8201 23.91% 
2 Efficiency ContactTimeC4  6.9817 18.93% 
3 Motion vzmax  − 6.1178 16.59% 
4 Motion vyNmean  − 5.8321 15.81% 
5 Safety FmaxSCN  − 2.2951 6.22% 
6 Safety VolumeRemovedSCN  − 2.2766 6.17% 
7 Efficiency ContactTimePLLRight  − 2.1945 5.95% 
8 Efficiency ContactTimePLLLeft  − 1.3218 3.58% 
9 Safety FmaxRVA  − 1.0443 2.83%  

Table 10 
Ranked surgical performance metrics with corresponding weights and relative 
importance for senior-residents.  

Rank Category Metric Connection 
Weights Product 

Relative 
Importance (%) 

1 Motion vyNmean  4.8357 30.75% 
2 Efficiency ContactLengthC4  3.8694 24.61% 
3 Motion vzmax  3.3675 21.41% 
4 Safety FmaxSCN  − 1.6055 10.21% 
5 Efficiency ContactTimePLLLeft  − 1.0675 6.79% 
6 Safety FmaxRVA  0.3224 2.05% 
7 Efficiency ContactTimePLLRight  0.3095 1.97% 
8 Efficiency ContactTimeC4  − 0.2959 1.88% 
9 Safety VolumeRemovedSCN  0.0525 0.33%  

Table 11 
Ranked surgical performance metrics with corresponding weights and relative 
importance for junior-residents.  

Rank Category Metric Connection 
Weights Product 

Relative 
Importance (%) 

1 Efficiency ContactLengthC4  − 12.3433 36.47% 
2 Efficiency ContactTimeC4  − 6.4255 18.99% 
3 Safety FmaxSCN  3.7846 11.18% 
4 Motion vzmax  3.0317 8.96% 
5 Efficiency ContactTimePLLLeft  2.2582 6.67% 
6 Safety VolumeRemovedSCN  2.1596 6.38% 
7 Efficiency ContactTimePLLRight  1.8638 5.51% 
8 Motion vyNmean  1.1712 3.46% 
9 Safety FmaxRVA  0.8065 2.38%  

Table 12 
Permutation Feature Importance on the training set.  

Rank Category Metric Difference in Loss 
function 

Prediction 
Accuracy (%) 

1 Efficiency ContactLengthC4  5.08 40.07% 
2 Motion vzmax  3.28 63.91% 
3 Efficiency ContactTimeC4  2.32 56.27% 
4 Efficiency ContactTimePLLRight  1.58 78.57% 
5 Efficiency ContactTimePLLLeft  1.58 78.57% 
6 Safety FmaxSCN  1.51 71.43% 
7 Safety FmaxRVA  1.51 71.43% 
8 Safety VolumeRemovedSCN  1.51 71.43% 
9 Motion vyNmean  1.21 84.13%  

Table 13 
Permutation Feature Importance on the testing set.  

Rank Category Metric Difference in Loss 
function 

Prediction 
Accuracy (%) 

1 Efficiency ContactLengthC4  4.37 15.62% 
2 Efficiency ContactTimePLLRight  2.58 20% 
3 Efficiency ContactTimePLLLeft  2.53 20% 
4 Efficiency ContactTimeC4  2.10 52.32% 
5 Safety VolumeRemovedSCN  1.97 60% 
6 Motion vyNmean  1.52 76.02% 
7 Safety FmaxRVA  1.44 63.82% 
8 Motion vzmax  1.42 80% 
9 Safety FmaxSCN  1.27 80%  
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insights identified by the developed neural network model in classifying 
the ACDF surgical performance level using a new adaptation of the 
Connection Weights Algorithm. The “black box” analogy has been 
frequently cited when using deep neural networks, as capturing the true 
importance of input features can become tedious [15]. In surgical 
training applications it is important to identify the impact and the 
relative importance of input features. In a multi-classification task, a 
useful method of revealing the importance of input features is the 
Connection Weights Algorithm, which quantifies the impact of each 
input feature (surgical performance metric) to each class (surgical level) 
[15]. The algorithm assigns a distinct weight for each feature-class pair 
by summing the products of all the connection weights that relate an 
input to an output. The calculated values, termed as the CWPs, can be 
further leveraged to identify the relative importance of the features to 
each surgical class. . To the best of the author’s knowledge, previous 
studies implemented this algorithm on simple one-hidden layer neural 
networks [13,15–17]. As such, the current study is the first to explore 
the usefulness of the method on multilayered neural networks and 
subsequently validate the approach using the permutation feature 
importance method. The significance of the Connection Weights 

Algorithm lies in its ability to capture the relative contribution of each 
input feature to each output in both magnitude and sign. For instance, a 
positive (or a negative) CWP implies that a higher (or a lower) than 
average feature value is related to a certain class. The use of the CWPs 
combined with the feature relative importance helps surgical educators 
design surgical training programs to help guide individual surgical 
trainees to enhance specific aspects of their skill sets that may need to be 
improved. This type of personalized residency technical skills training 
program could maximize trainee bimanual psychomotor training 
dependent on initial and ongoing information from simulation studies. 
Our group has proposed a conceptual framework referred to as “Tech
nical Abilities Customized Training” (TACT) [28]. Surgical TACT pro
grams could focus on accelerating top performers, improving areas of 
weakness in average performers and early identification of trainees with 
poor surgical performance, while initiating multiple validated methods 
to enhance and to maintain the bimanual performance of all groups. 

4.2.1. Insights of the ANN classifications 
The Connection Weights Algorithm provides a detailed description of 

the differences in the surgical performance metrics of the incision task 
between groups. Differences in the surgical performances are high
lighted by the differing values of the CWPs and their relative importance 
for each input feature among the three groups. Obtaining the relative 
importance of the features for each of the surgical level groups identifies 
the most impactful metric that defines a certain surgical level. Consider 
Tables 8–10, the most impactful metrics that distinguish level of surgical 
performance between the junior, senior, and post-resident groups are 
efficiency and motion metrics – mainly the C4 vertebra contact length 
and time (ContactLengthC4 & ContactTimeC4) and the maximum velocity 
in the z direction (vzmax). Junior group surgical performance differs from 
the senior and the post-resident groups with respect to the C4 contact 
length and time metrics, pinpointing the main aspects of the surgical 
performance that uniquely distinguishes the junior group. Even though 

Fig. 8. Learning patterns of the Connection Weights Products for each input feature.  

Table 14 
Surgical performance metric scores of the misclassified junior resident partici
pant. The performance of this individual diverged from the junior group and 
resembled the senior group performance, which is evident when comparing the 
scores to the CWPs of the Junior and Senior resident groups.  

Category Metric Score Junior: CWP (% 
Importance) 

Senior: CWP (% 
Importance) 

Efficiency ContactLengthC4  0.43 − 12.3433 
(36.47%) 

8.8201 (23.91%) 

Efficiency ContactTimeC4  0.95 − 6.4255 (18.99%) 6.9817 (18.93%) 
Motion vzmax  − 0.34 3.0317 (8.96%) − 6.1178 

(16.59%)  
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the senior and post-resident groups behave similarly in their interactions 
with the C4 vertebra (ContactLengthC4), their surgical performance di
verges in the motion metrics resulting in a unique performance signature 
for each group. This might imply that for a new participant, the values 
scored in these most impactful metrics would influence the likelihood of 
the surgical performance classifications. For instance, there is an 
increased likelihood of classifying an individual as a post-resident, as 
opposed to a junior or a senior resident, when the participant uses 
relatively slow movements and interacts with the C4 vertebra using 
relatively long paths and time. This is exemplified by the misclassified 
junior resident participant in the testing set discussed in the previous 
section. These results are consistent with the construct validity findings 
of Ledwos et al., which found that post-residents utilize longer contact 
paths and time as compared to the junior group during the incision step 
[5]. 

4.2.2. Educational learning patterns revealed by the ANN 
The CWP not only allows for a better understanding of the insights 

behind the ANN classifications, but it also may help guide trainees in 
their progression towards surgical expertise. Fig. 8 demonstrates a 
visualization of the CWP trends between the junior, senior, and post- 
resident groups for each feature. Two main learning patterns have 
been identified using ANN to assess the surgical performance of post- 
residents, senior and junior residents during the simulated ACDF pro
cedure on the Sim Ortho Platform [6,18]. These two patterns have been 
identified as continuous and discontinuous learning. More specifically, 
continuous learning is associated with sequential improvements of skills 
as the surgical training level evolves from junior to senior then finally to 
post-resident surgical level. Discontinuous learning pattern is charac
terized with non-sequential progression of skills while progressing from 
the junior resident to the post-resident surgical level, passing through an 
inconsistent senior resident level. The CWPs of all the safety and effi
ciency metrics exhibit a continuous learning pattern, while the motion 
metrics show a discontinuous one. 

In all three of the safety metrics, the junior resident group utilizes 
higher forces on both the right vertebral artery and the spinal cord 
nerves as well as removes larger volumes of the spinal cord nerves as 
compared to the senior and post-resident groups. The post-residents use 
less forces and remove the smallest volumes among the three groups. 
Hence, a trainee might aim to use lower forces and remove smaller 
volumes of critical anatomical structures to improve their surgical 
incision performance. It is to be noted, however, that the incision step 
would not usually result in significant forces being translated to the right 
vertebral artery and spinal cord nerves. Nevertheless, the patterns 
identified in this analysis still underly differences in surgical perfor
mances. Efficiency metrics also display continuous learning patterns; 
however, the direction of the trends differ. Post-residents employ longer 
paths and more time when interacting with the C4 vertebra compared to 
senior and junior residents, while junior residents use more time when 
interacting with both the right and left posterior longitudinal ligaments 
as compared to the senior and post-resident groups. To improve surgical 
performance, a trainee would want to limit the interactions to the C4 
vertebra while minimizing interactions with the posterior longitudinal 
ligaments. 

The CWPs of the motion features presented in Fig. 8 exhibit a 
discontinuous learning pattern that passes through an inconsistent se
nior surgical training level. Both the junior and post-residents are 
associated with slower movements as compared to the senior group, 
with the post-residents using substantially slower controlled movements 
than the other two resident groups. A dilemma exists for the discon
tinuous learning patterns, as it is not directly clear from the data 
generated by the Connection Weights Algorithm whether junior trainees 
should be trained to the senior resident surgical level or alternatively to 
the expert post-resident surgical level. Studies are needed to determine 
the appropriate training approach when discontinuous learning patterns 
are identified when utilizing VR intelligent tutoring systems. 

Rao et al. provides a detailed description of the ACDF operation [29]. 
In the annulus incision step, the surgeon is required to perform the 
incision by using the borders of the vertebra along with the vertebral 
joint as a guide to avoid injuries to anatomical structures [29]. This 
description is consistent with the expert performance extracted from the 
CWPs of post-residents. Their performance is characterized by patient 
safety related considerations: controlled movements, long paths along 
the C4 vertebra, low exerted forces on both the right vertebral artery and 
the spinal cord nerves, and minimal interactions with the posterior 
longitudinal ligaments. The consistency of the post-resident surgical 
performance to that described by Rao et al. increases the confidence in 
classifying the post-residents as “experts”. Our group has developed a 
performance model for virtual reality procedures which focuses on the 
expert surgeon primary concern being the safety and efficiency of pro
cedures. It appears reasonable to speculate that for the incision step of 
the ACDF it may be appropriate to train junior residents to mirror expert 
level of performance rather than that of the senior group [9,30]. 

Unveiling the patterns generated by the neural network and using 
the Connection Weights Algorithm illuminates some aspects of the 
“black box” principally focused on safety and efficiency providing new 
insights on these crucial characteristics of surgical performance. 

4.2.3. Permutation feature importance 
To further support the novel application of the Connection Weights 

Algorithm on a multiple hidden ANN, this study further analyzed the 
importance of the surgical performance metrics by applying the per
mutation feature importance algorithm. The algorithm was applied on 
both the training and testing sets, as each can give different insights on 
aspects of surgical performance and the associated classifications. Using 
the training set, the permutation feature importance underscores the 
metrics that are seen important during the learning phase of the model. 
It highlights the features that the model used in building the connections 
between surgical performance metrics and surgical classifications. Uti
lizing the testing set, the algorithm highlights the critical features for the 
model to perform well on unseen data. It highlights the features that the 
model relies on when making new predictions. Furthermore, applying 
the algorithm on both the training and testing sets allows for a com
parison of metrics that overlap between the two analyses, thus under
scoring the true importance of metrics in both the model’s learning and 
prediction phases. 

Using both the training and the testing sets, the most impactful 
metrics outlined by the permutation feature importance algorithm fall 
under the efficiency category (Tables 12 and 13). More specifically, the 
contact length and time with the C4 vertebra are seen to be among the 
top metrics, with the C4 contact length being the most important metric, 
conforming to the results obtained using the CWPs. The results obtained 
from the use of the training set (Table 12) reached a higher conformity 
with the results of the CWPs, which is expectable since both utilize the 
information stored by the final model during training. Similar to the 
results of the CWPs for the three different classes, the permutation al
gorithm on the training set found the top three features to be the contact 
length and contact time with the C4 vertebra, and the maximum velocity 
in the z-direction. Furthermore, among the safety category, the top 
feature was the maximum force applied on the spinal cord nerves, 
similar to the results of the CWPs. While basing the analysis on the 
training set might be discouraged, the results shed some insights on 
aspects of surgical classifications that aid in the study’s objectives of 
understanding the most impactful metrics that differentiate surgical 
performances. 

Similarly, the results obtained from applying the algorithm on the 
testing set demonstrate that the contact length and time with the C4 
vertebra to be among the most impactful metrics (Table 13). However, 
there are some discrepancies among the remaining feature rankings 
when compared to the results of the CWPs, highlighting some of the 
limitations in interpreting feature importance. While using the trained 
model to highlight important features might give insights on surgical 
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performance, the identified features might not be directly transferrable 
to be impactful in the prediction of unseen data. For the current study, 
two of the most important features found using the permutation feature 
importance algorithm on the testing set coincided with both the results 
on the training set and the results of the CWPs. This further supports the 
findings and analysis of the CWPs and the associated impact of CWP 
values on predictions, such as the analysis made on the misclassified 
individual. 

4.3. ACDF surgical simulation 

The ACDF simulation is a four-part surgical scenario allowing each 
step to be independently validated and used for training. Each compo
nent of the ACDF simulation was previously validated by Ledwos et al. 
[5]. The second and third steps of the surgical simulation, concerning 
the discectomy and osteophyte removal components, have been outlined 
[6,18]. These studies utilized some of the same participant data to 
generate metrics and extract CWPs from developed ANNs, employing 
similar methodology. These studies only used a single layer ANN with a 
different optimization technique and included 2 less post-operative 
participants. Table 15 presents a comparison between the analysis 
conducted on the three simulation components. The discectomy 
component of the simulation is more complex since three different 
surgical instruments can be used to complete the task and sixteen met
rics to distinguish surgical performance spanning four metric categories. 
The annulus incision step is the least complex only requiring one sur
gical instrument and nine metrics spanning three categories to distin
guish performance. The osteophyte removal component employs an 
active drill but can be considered intermediate in complexity using six 
metrics arising from one category. The discectomy and osteophyte 
removal requires more expertise to safely complete these tasks, which is 
consistent with the increased number of safety metrics outlined 
(Table 15). The current study identified nine metrics spanning three 
categories with the efficiency metrics being more important in dis
tinguishing surgical performance for the annulus incision step. 

5. Limitations 

5.1. ANN limitations 

The development of the MLP artificial neural network model in this 

study followed a systematic approach that is based on best practices of 
utilizing machine learning algorithms for surgical performance assess
ments (Fig. 1) [10,31]. The methodology used in building and training 
the model focused on avoiding common pitfalls related to overfitting 
and computational cost. A two-layer network MLP was trained with 
early stopping to improve the model generalizability and save compu
tational time. Several limitations are associated with the model devel
oped in this study. First, the generalizability of the model is restricted 
due to the limited available data from only one center. Training the 
model on larger datasets that span multiple institutions is necessary to 
develop a more robust model. Second, most studies utilizing Connection 
Weights Algorithm were based on one-hidden layer neural networks 
rather than the multiple hidden layer network used in this study [6,13, 
18]. This study adapted the algorithm to be applicable on multiple 
hidden layer networks and further studies are necessary to support this 
application. Nevertheless, this study re-analyzed the feature importance 
using the permutation method to further support the novel adaptation of 
the Connection Weights Algorithm. The findings of the permutation 
algorithm suggests that features found important using the training set 
are not necessarily transferrable to metrics that aid in new predictions. 
However, metrics that overlapped between the training and testing sets 
supported the findings of the Connection Weights Algorithm. In the 
current study, the top two impactful metrics coincided between the 
training, testing, and the CWPs results, therefore further supporting the 
current analysis. 

5.2. ACDF surgical simulation limitations 

The ACDF simulator utilized in this study does not encompass the 
many complex interactions that occur in the performance of a patient 
ACDF procedure. Several important components of the procedure are 
automated preventing an assessment of important aspects of surgical 
exposure of the appropriate cervical disc space. The OSSimTech simu
lator used was developed for right-handed users limiting both its 
applicability to left-handed participants and the ability to quantitate 
bimanual performance. Previous studies in our group have demon
strated differences in right-and left-handed ergonomics and modifica
tions in the platform are necessary to allow bimanual skills performance 
to be assessed and provide a more holistic understanding of the expertise 
necessary to safely carry out an ACDF [30,32]. 

The simulator utilizes an advanced voxel-based gaming engine that 
generates the graphical representation of the anatomical structures and 
instrument interactions and leverages haptic and auditory feedback to 
augment the experiential realism of the simulation. Recent studies have 
highlighted the importance of using physics-based haptics to ensure the 
accuracy and reliability of the generated force feedback and the 
importance of extracting and implementing realistic physics-driven 
feedback using data from cadaveric experiments [3,33,34]. Forces 
generated using simulators with discrete or heuristic approaches, not 
based on constitutive modeling from the continuum mechanical 
method, may not accurately provide or, consequently, record the forces 
experienced in real patient operations which might tend participants to 
respond with forces not used in reality. Naturally, this error presents a 
further limitation when utilizing the force metrics in surgical training, as 
the benchmark values identified by the simulator might be different to 
reality and thus resulting in training junior residents to wrong skill 
levels. On a similar note, the simulator used in the current study has 
detected and identified interactions with anatomical structures that 
usually are not experienced during the incision step. The results indicate 
that applying pressure on the annulus resulted in forces being translated 
to the vertebral arteries, the posterior ligaments, and the spinal cord 
nerves. Although this might be a misrepresentation of the actual surgical 
step, the main outcomes of the analysis still hold. Indeed, multiple 
studies including the present one has found that more experienced 
surgeons tend to use lower and more controlled forces as compared to 
junior trainees [6,18,32]. Moreover, the expert surgeons in the current 

Table 15 
Comparison Between the Annulus Incision Step, the Discectomy Step, and the 
Osteophyte Removal Step of the ACDF surgical Simulation.   

Annulus Incision Discectomy Osteophyte 
Removal 

No. of 
Instruments 
Used 

1 (No. 15 Blade) 3 (Bone Curette, 
Pituitary Rongeur 
and Disc Rongeur) 

1 (Burr) 

No. of Metrics 
Identified 

9 16 6 

Metrics 
Categories 

Motion, Safety & 
Efficiency 

Motion, Safety, 
Efficiency & 
Cognitive 

Safety 

Top 3 Ranked 
Metrics 

Motion & 
Efficiency 

Safety & Cognitive Safety 

Most Important 
Category of 
Metrics 

Efficiency Safety Safety 

Accuracy of the 
Model 

80% 83.3% 83.3% 

Lowest & 
Highest 
Magnitude of 
CWP 

0.05 & 12.34 0.02 & 5.24 0.08 & 1.5 

Hidden Learning 
Patterns 

Continuous & 
Discontinuous 

Continuous & 
Discontinuous 

Continuous & 
Discontinuous  

S. Alkadri et al.                                                                                                                                                                                                                                 



Computers in Biology and Medicine 136 (2021) 104770

11

study were able to avoid unnecessary interactions with the mentioned 
anatomical structures by following the path of the vertebral body, 
indicating that expert performance would not generate forces on irrel
evant anatomical structures. This result further supports the validity of 
the simulator in successfully differentiating between surgical levels. The 
development of smart operative instruments capable of measuring force 
application during patient procedures, as being developed in the 
Musculoskeletal Biomechanics Research Lab, to the forces assessed in 
identical scenarios utilized in virtual reality simulators will allow edu
cators to more accurately assess the formative role of these platforms. 

6. Conclusion 

This study demonstrates the use of an ANN to distinguish virtual 
reality surgical performance for assessment and training of surgical 
performance. Our results outline the significant potential of extracting 
hidden patterns within neural networks to highlight the important 
composites of expert and less skilled surgical performances, and the 
potential integration of ANNs with virtual reality surgical simulator 
platforms for formative and summative assessment. 
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