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Continuous monitoring of surgical bimanual expertise using
deep neural networks in virtual reality simulation
Recai Yilmaz 1✉, Alexander Winkler-Schwartz 1,2, Nykan Mirchi 1, Aiden Reich1, Sommer Christie1, Dan Huy Tran1, Nicole Ledwos1,
Ali M. Fazlollahi 1, Carlo Santaguida2, Abdulrahman J. Sabbagh3,4, Khalid Bajunaid 5 and Rolando Del Maestro1,2

In procedural-based medicine, the technical ability can be a critical determinant of patient outcomes. Psychomotor performance
occurs in real-time, hence a continuous assessment is necessary to provide action-oriented feedback and error avoidance guidance.
We outline a deep learning application, the Intelligent Continuous Expertise Monitoring System (ICEMS), to assess surgical bimanual
performance at 0.2-s intervals. A long-short term memory network was built using neurosurgeon and student performance in 156
virtually simulated tumor resection tasks. Algorithm predictive ability was tested separately on 144 procedures by scoring the
performance of neurosurgical trainees who are at different training stages. The ICEMS successfully differentiated between
neurosurgeons, senior trainees, junior trainees, and students. Trainee average performance score correlated with the year of
training in neurosurgery. Furthermore, coaching and risk assessment for critical metrics were demonstrated. This work presents a
comprehensive technical skill monitoring system with predictive validation throughout surgical residency training, with the ability
to detect errors.
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INTRODUCTION
The mastery of technical skills is of fundamental importance in
medicine and surgery as technical errors can result in poor
patient outcomes1–3. The learning of bimanual psychomotor
skills still largely follows an apprenticeship model: one defined
by a trainee completing a fixed-length residency working closely
with instructors. Technical skills education is transitioning from
this time-focused approach to competency-based quantifiable
frameworks4,5.
Surgical trainees are considered competent when they can

perform specific surgical procedures safely and efficiently,
encompassing knowledge, judgement, technical and social skills
to solve familiar and novel situations to provide adequate patient
care6. The focus on “adequate” rather than “excellent” or “expert”
patient care relates to challenges in outlining, assessing,
quantifying, and teaching the composites of surgical expertise.
To provide competency-based frameworks for complex psycho-
motor technical skills, advanced platforms need to be created
which provide objective feedback during training along with error
mitigation systems7. These frameworks need to be transparent
and based on quantifiable objective metrics8,9.
A technically challenging operative procedure in surgery

involves the subpial resection of brain tumors adjacent to critical
cortical structures10. Neurosurgical graduates are expected to be
proficient in this complex bimanual skill which includes minimiz-
ing injury to adjacent normal tissues and hemorrhage from
subpial vessels. Technical errors in this procedure can result in
significant patient morbidity10,11. Our group developed complex
realistic virtual reality tumor resection tasks to aid learners in the
mastery of this skill12,13. Exploiting these simulations on the
NeuroVR platform with haptic feedback (CAE Healthcare,

Montreal, Canada) we quantified multiple components of the
bimanual psychomotor skills used to expertly perform these tasks.
Utilizing this data post-hoc, we developed expert performance
benchmarks to which learner scores were compared and machine
learning algorithms to classify participants into pre-defined
expertise categories8,14,15. Limitations of these applications were
the inability of ongoing assessment and error detection and
improving performance during the task by providing continuous
feedback.
Most surgical skills learning occurs in the operating room,

with the surgeon instructor continuously evaluating trainee
performance and providing coaching to improve performance
with a particular focus on preventing surgical errors which may
cause patient injury. This assessment occurs in real-time and is
relevant to the precise action being performed by the trainee
and the risks associated with that action. To mimic the role of
expert operative instructors, we developed an artificial intelli-
gence (AI) deep learning application, the Intelligent Continuous
Expertise Monitoring System (ICEMS). The ICEMS was developed
with two objectives: 1) to make a continuous assessment of
psychomotor skills to detect less-skilled performance during
surgery, 2) to provide ongoing action-oriented feedback and risk
notifications.
This paper outlines the development of the ICEMS (Fig. 1) and

provides predictive validation evidence that enables future
studies to explore its efficacy in simulation training. To our
knowledge, this application is the first continuous bimanual
technical skill assessment using deep learning with the
predictive validation on surgical trainee performance through-
out a residency program16.
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RESULTS
Participants and data
Neurosurgeons, neurosurgical fellows, neurosurgical residents,
and medical students from McGill University were invited to
participate. Neurosurgeons and medical students were categor-
ized as experts (n= 14) and novices (n= 12), respectively.
Neurosurgical fellows and residents were allocated a priori into
two groups based on their previous operative exposure: seniors (4
neurosurgical fellows and 10 neurosurgical residents in years 4–6,)
and juniors (10 neurosurgical residents in years 1–3) (Table 1).
Each participant performed two different simulated subpial tumor

resection tasks a total of six times, resulting the data from 300
attempts in total (Fig. 2). The simulated scenarios were described
previously (Fig. 3)8,12. Data were recorded in a single time point.
No data-exclusion was applied. Mean age [SD] was, for experts:
45.9 [8], for seniors: 32.3 [2.1], for juniors: 29.8 [3.2] and for novices:
24 [1.3]. Trainee number of complete subpial tumor resections
performed (mean [min-max]) was, seniors: 14.7 [0–45], juniors: 1
[0–7] (Supplementary Table 3).

AI design and development
The definition of expertise in surgical technical skills is challenging
since surgical performance involves continuous interplay between
multiple factors17. However, the composites of expertise are
present in the performance of expert professionals. We developed
the Intelligent Continuous Expertise Monitoring System in this
context by training a Long-Short Term Memory (LSTM) network to
learn operative surgical expertise from the difference between
expert and novice surgical skills considering the continuous flow
of the performance. The algorithm was trained with both end skill
levels with more than 700min of operative performance with a
data entry at 0.2-s intervals (with over 200,000 data points of
analysis).
A surgical performance is a combination of multiple intrao-

perative interactions. An appropriate assessment requires con-
sidering these tasks being carried out within the flow of the
performance. LSTM networks, as a type of recurrent neural
network, allowed for the evaluation of each time point in relation
with the previous time points, giving the ability to consider
sequences in movements18–20.
Sixteen performance metrics were extracted at 0.2-s increments

from the simulation data (Fig. 4). Metrics included features related
to bimanual technical skills such as instruments tip separation

Fig. 1 Outline of the application. Raw data acquired from the simulator is used to calculate relevant features, metrics of interest. Data
obtained from participants who are at different stages of expertise is used to train a LSTM network. The trained algorithm provided
continuous assessment, intelligent instructions, or risk warnings, depending on the output feature selected. Multiple algorithms are trained to
demonstrate potential applications of the ICEMS.

Table 1. Residents’ demographics.

Post Graduate Year of
Training

Number of
Trainees

Neurosurgical Fellows 7 4

Neurosurgical Senior
Residents

6 3

5 2

4 5

Neurosurgical Junior
Residents

3 4

2 2

1 4

Total 24

Twenty-four neurosurgical trainees participated in the study: 4 neurosur-
gical fellows, 10 senior residents (post-graduate year 4–6), 10 junior
residents (postgraduate year 1–3).
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distance, force applied by each instrument and velocity and
acceleration of each instrument as well as operative factors such
as tumor removed, control of bleeding and damage to healthy
tissue. An LSTM algorithm was built by inputting these
16-performance metrics utilizing only expert/neurosurgeon (n=
14) and novice/medical student (n= 12) performance data on 84
and 72 tasks, respectively. The algorithm was structured as a
regression model quantifying expertise level as a continuous
variable from expert/skilled level (a score of 1.00) to novice/less-
skilled level (a score of −1.00). To avoid overfitting, root-mean-
squared-error (RMSE) values on the three separate datasets were
monitored (Supplementary Table 1). Detailed information about
algorithm structure and development can be found in Online
Methods and Supplementary data.

Quantifying skills
The performance of 24 trainees (on 144 tasks) in different years of
neurosurgery training (Table 1) was used to assess the algorithm’s
predictive validation. All 300 participant trials were scored by the
trained LSTM algorithm at 0.2 s intervals between ‘1.00’(skilled)
and ‘−1.00’(less-skilled). An average performance score was
calculated for each task (Supplementary Fig. 5). Participants’
mean scores were calculated across six trials for statistical
comparisons.
Group average surgical performance scores were; experts, 0.509;

95% CI [0.424–0.593]; seniors, 0.258; 95% CI [0.114–0.402]; juniors,
−0.11; 95% CI [−0.358–0.139]; and novices, −0.398; 95% CI
[−0.545–−0.251]. No outliers were found, as assessed by boxplot.
Only a trial data that belongs to a fifth attempt of a neurosurgeon
was missing, no imputation was made. Average performance
score was normally distributed for each expertise group as
determined by Shapiro-Wilk test (p > 0.05). Levene’s test showed
equality of variances, based on median (p= 0.083).
The average performance score was significantly different

between expertise groups, F(3,46) = 33.927, p < 0.001, as
determined by a one-way ANOVA. Tukey-Kramer post-hoc test
of between groups differences revealed that the expert group
scored significantly higher than seniors (mean difference: 0.251
95%CI [0.004–0.497], p= .045) and juniors scored significantly
higher than novices (mean difference: 0.289 95%CI [0.009–0.568],
p= .04) in average performance score. The ICEMS also differ-
entiated between surgical trainee groups with seniors scoring

significantly higher than juniors (mean difference: 0.367 95%CI
[0.097–0.638], p= .004) (Fig. 5). In a linear regression analysis
resident year of training in neurosurgery statistically predicted the
average performance score, F(1, 22) = 9.81, p= 0.005 and
accounted for 30.8% of the variation in the average score with
adjusted R2= 27.7%, a large size effect according to Cohen
(1988)21. Average performance score increased by 0.092, 95% CI
[0.031–0.153] per training year (Fig. 6). The ability of the ICEMS to
continuously assess surgical performance during the surgical task
is demonstrated in videos outlining a neurosurgeon [video-1] and
a medical student performance [video-2] (video legend: Supple-
mentary Fig. 3).

Coaching and risk detection
A major application of the ICEMS is to provide continuous
personalized action-oriented feedback helping trainees modify
their bimanual psychomotor movements to expert-level perfor-
mance and provide critical information to mitigate errors. Three
algorithms provided continuous expert-level coaching for (1)
aspirator utilization, (2) bipolar forceps utilization and (3) bimanual
coordination8,15,22. These algorithms provided the ability to revise
instrument utilization to expert level continuously. Two other
algorithms demonstrated ongoing risk detection capacity for (4)
bleeding and (5) healthy tissue injury8,23. RMSE values obtained for
training, validation and testing of these algorithms are available in
Supplementary Table 1.
Although, the validation of these modules in practice for

coaching and risk detection will be the object of future studies, we
outline the video performance of these algorithms on a senior
[video-3] and a junior resident operation [video-4] (video legend:
Supplementary Fig. 4). Learning from the difference between
expert and novice performance, the ICEMS reproduces some
components of intelligent assessment and coaching similarly
provided by expert surgical instructors in the operating room.

DISCUSSION
The transition towards competency-based quantifiable frame-
works for evaluation and teaching of surgical technical skills is
resulting in the development of high-fidelity virtual reality
simulators to aid this learning transformation. These systems
provide trainees with repetitive opportunities for experiential

Participants (n=50)

Experts
Neurosurgeons (n=14)

Senior trainees
Neurosurgical fellows and post-

graduate year 4-6 residents

(n=14)

Junior trainees
Neurosurgical post-graduate

year 1-3 residents (n=10)

Novices
Medical students (n=12)

Practice Simulation Task (x5)
Number of trials, n=69

Realistic Simulation Task (x1)
Number of trials, n=14

Practice Simulation Task (x5)
Number of trials, n=70

Realistic Simulation Task (x1)
Number of trials, n=14

Practice Simulation Task (x5)
Number of trials, n=50

Realistic Simulation Task (x1)
Number of trials, n=10

Practice Simulation Task (x5)
Number of trials, n=60

Realistic Simulation Task (x1)
Number of trials, n=12

Total number of trials, n=83 Total number of trials, n=84 Total number of trials, n=60Total number of trials, n=72

Training set

70% (n=59)

Validation set

15% (n=12)

Testing set

15% (n=12)

Training set

70% (n=48)

Validation set

15% (n=12)

Testing set

15% (n=12)

AI training 
with

independent
verification

Post-AI statistical
comparison to

assess predictive
validation

Experts 

(participant mean score, n=14)

Senior trainees 

(participant mean score, n=14)

Junior trainees

(participant mean score, n=10)

Novices 

(participant mean score, n=12)

Fig. 2 Flow diagram. AI: artificial intelligence. One trial data belonging to a neurosurgeon was not available.
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learning in patient risk-free environments without limitations
imposed by the availability of expert surgical instructors or patient
cases24–26. We demonstrate an artificial intelligence application to
enable these platforms to function as objective autonomous
intelligent training platforms with the ability to continuously track
psychomotor learning as surgical trainees transition along the
spectrum from novice to expert performance.
The NeuroVR platform (previously NeuroTouch, CAE Healthcare,

Montreal, Canada) used in this study is a high-fidelity virtual reality
neurosurgical simulator that allows 3D visual and haptic interac-
tion in a hyper-realistic simulated surgical environment13. This
platform was developed by a team of engineers from the National
Research Council of Canada with expert inputs from 23 interna-
tional training hospitals. Extended realism was provided by the 3D
microscopic visualization through a binocular, and two haptic
handles to allow bimanual simultaneous movement. Tumor
physical properties were adjusted using data from multiple
primary human brain tumor specimens27. Haptic tuning was
applied based on the feedback from neurosurgeons12. Human
brain tissue and bleeding mechanics were implemented including
pulsation of blood vessels. A brain tumor surgery intraoperative
audio recording was added to increase background auditory
realism. The vast dataset generated by this platform allowed for
the development of comprehensive intelligent systems8,9.
Studies involving real-time surgical technical skills assessment

demonstrated supportive results; however, these studies were
restricted to one-handed virtual reality systems during a steerable
needle task, epidural needle insertion or drilling a simulated
femur28–30. Most operative procedures involve the coordinated
interactions of both hands, each employing a different instrument
to accomplish an operative goal. The major roles of expert
operative room surgical instructors are to assess trainees’
bimanual skills and help them improve their skills to safely carry
out procedures to decrease patient morbidity and mortality31. This
is crucial especially for high-risk medical procedures. Our group
has focused on developing an LSTM network to mirror the role of
surgical instructors in assessing bimanual performance involving
high-risk complex neurosurgical procedures like the subpial
resection. Previous real-time assessment applications utilized

small datasets, included engineering students or nonidentified
participants and have not validated or tested their algorithms on
appropriate learner performance16,28–30,32. In contrast, the ICEMS
was developed utilizing neurosurgeon/expert and medical stu-
dent/novice performance, and its performance was tested using
the data from neurosurgical trainees who are at different stages of
training.
Our framework offers several advantages. First, the ICEMS was

trained as a regression model with the two-end skill level
performance, providing a continuous expertise scale from novice
to expert level. This allowed a more granular performance
assessment from the previous applications8 and tracking of
learning throughout the years of residency training from medical
school training to years of practice. Second, we developed our
system utilizing two simulated tasks that require the same
bimanual surgical technique. This approach offers a more
generalizable assessment of this surgical technique across
different tasks.
One of the drawbacks of deep learning applications is the ‘black

box’ problem where the complexity of the analysis (1) limits the
interpretability of the assessment and (2) makes providing
relevant information for feedback difficult. To overcome these
issues; (1) our assessment system was built on relevant features
that are easy to understand and learn. Based on our previous
studies, we implemented features representing dominant and
non-dominant hand movement and force applied, bimanual
cognitive, tissue and bleeding information, and safety metrics.
(2) Separate algorithms were trained to work in reverse and
provide ongoing feedback for the very features that the
assessment was made on. We demonstrate a methodology to
generate feedback for any essential performance metric and
provide five example features for coaching and risk detection
(Supplementary Fig. 2).
In previous self tutoring frameworks, the proposed coaching

was based on expert level classification or pre-recorded expert
parameters such as videos, benchmarks, or milestones9,33–35. In
contrast to determining feedback based on expertise group
classification or static parameters, the ICEMS produces dynamic
feedback for each performance metric by separate algorithms.

Fig. 3 Simulated tumor resection tasks. Participants carried out two simulated tumor resection tasks, the simulated subpial tumor resection
(a, b and c) 5 times and the simulated complex brain tumor operation (d, e and f) once, employing a simulated ultrasonic aspirator in the
dominant hand and a simulated bipolar forceps in the non-dominant hand. Both instruments were activated by separate pedals. These tasks
were designed with bleeding capacity to replicate the high-risk complex subpial brain tumor resection. (f) demonstrates cauterization using
the bipolar forceps.
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This involves revising predictions to the highest expert perfor-
mance level for specific metrics continuously throughout the task,
and this revised information can be used as feedback for trainees
or any level of performance including expert groups. An action-
oriented personalized coaching is provided for specific metrics.
The continuous evaluation done by the ICEMS can be utilized

either in real-time to produce visual, auditory, and haptic clues to
enhance performance during the task, or to make a summative
assessment and provide feedback after task completion. Both
learners and instructors can be provided with post-hoc perfor-
mance videos flagged with the exact time frame(s) of less-skilled
performance (see the videos provided in Results). This AI-
generated information outlining the reasons for less-skilled
assessment may improve trainee self-directed performance and
help educators improve learner skills.
Experts may demonstrate performance features that are similar

to that of less-skilled level performance. These common features
may be due to the intrinsic characteristics of human bimanual
performance, the simulated task, or the limits in recording data.
For this reason, the ICEMS was built using expert-level

LSTM network

Input Performance Metrics Category

1- Force Utilized by Aspirator (N) S, E

2- Force Utilized by Bipolar Forceps (N) S, E

3- Instrument Tip Separation Distance (mm) B

4- Force Change Aspirator (N/t) S

5- Force Change Bipolar Forceps (N/t) S

6- Aspirator Velocity (mm/t) M

7- Bipolar Forceps Velocity (mm/t) M

8- Aspirator Acceleration (mm/t²) M

9- Bipolar Forceps Acceleration (mm/t²) M

10- Instrument Tip Separation Change (mm/t) B

11- Tumor Volume Removed (mm³/t) Q

12- Healthy Tissue Removed (mm³/t) S

13- Bleeding Speed (mm³/t) S

14- Blood Pooling (mm³) S, E

15- Total Blood Loss (mm³) S

16- Blood Pooling Change (mm³/t) S, E

Expertise level

S: Safety Q: Quality E: Efficiency B: Bimanual Cognitive

Output Metric

M: Movement

Units: N: Newton, mm: millimeter, t: time (20 milliseconds)

Fig. 4 Performance metrics. Sixteen performance metrics from five categories: safety, quality, efficiency, bimanual cognitive and movement,
were extracted from the raw data. An LSTM network was trained inputting the 16-performance metrics, predicting expertise. The LSTM
network was structured as regression model to predict expertise as a continuous variable from 1 (expert) to −1 (novice). N Newton, mm
millimeter, t time (0.02 s).

Fig. 5 Average score of groups. When the performance of the
participants was scored by the ICEMS, the average scores were: for
experts (neurosurgeons, n= 14) 0.509; 95% CI [0.424–0.593], for
seniors (n= 14) 0.258; 95% CI [0.114–0.402], for juniors (n= 10)
−0.11; 95% CI [−0.358–0.139], and for novices (medical students,
n= 12) −0.398; 95% CI [−0.545 −0.251]. Skilled and less skilled
performance are represented in the y-axis by scores closer to ‘1’ and
‘−1’, respectively. Bars represent standard errors.

*p = 0.005, Estimate increase by a year = 0.092

Fig. 6 Average score versus year of training in neurosurgery. The
average score yielded a significant correlation with the trainees’ year
of training (p= 0.005), increased by 0.092 per training-year, with a
linear regression analysis. Blue dots represent the average score of
each trainee, x axis represents year of training in neurosurgery.
Resident participants’ neurosurgery training program was six years.
Neurosurgical fellows were considered in 7th year in training.
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performance in comparison to novice performance to differentiate
expert specific features. Our results have shown that these expert-
specific patterns were increasing throughout trainee-years in
training.
Expert surgeons develop and implement autonomous motor

activity defined as ‘psycho-motor skills script’ with increasing
surgical knowledge15. Our system allows trainees to have constant
awareness of their level of performance as visualized on a less-
skilled to expert scale. By self-modifying their bimanual psycho-
motor movements with the capacity for unlimited repetitions to
achieve expert performance trainees may more quickly develop a
“psychomotor skills script” associated with muscle memory that
expert surgeons develop and maintain. This may allow trainees to
be more prepared when faced with similar procedures in the
operating room15,36,37.
Our system is developed in the context of surgical simulation

using the extensive information recorded by a specific virtual
reality simulator. However, this methodology can be useful
beyond the scope of surgical simulation and applicable to any
technical performance where the necessary data is available.
Intraoperative surgical instrument tracking systems are being
developed27. Future surgical operative rooms may benefit from
this application by the integration of AI and intraoperative data
recording systems/instruments38,39. Surgical operative rooms may
evolve into intelligent operating rooms outfitted with a series of
evaluating and intelligent tutoring platforms focused on enhan-
cing safe operative performance and thus improving patient
outcomes40.
Studies have demonstrated that technical skills may correlate

with surgical outcomes2,41. Improvement in technical skills may
improve the outcome, hence, current attempts in simulation
training are focused on enhancing trainee technical skills
acquisition. However, it remains to be explored if training with
intelligent simulation systems can improve patient outcomes.
Deep learning applications require larger datasets19. Complex

patient cases often require surgeons who have specific expertise
in these operative procedures. Surgical trainees acquire these skills
operating with limited number of experts, but in multiple
repetition of patient cases. Intelligent systems can be developed
in a similar way that the trainees learn, using information from
limited number of experts but involving multiple occasions of a
surgical procedure. This study involved data from 14 neurosur-
geons (experts) each repeating the simulation tasks a total of six
times, allowing an assessment of 83 expert trial data. If the
number of experts is limited, the number of task repetitions
performed by each surgeon can be increased to develop accurate
and generalizable intelligent systems. This approach may provide
a feasible and reproducible method in the intelligent assessment
of different surgical skills. Should the data size be limited, data
augmentation methodologies can help to increase data size and
achieve reliable predictions42. Intelligent systems can be con-
tinuously improved with more data available. Applications with
real-time assessment, coaching and risk detection ability may
promote the use of these systems, provide access to new data,
and allow further improvement of these systems.
This study has several limitations. Our simulation does not

reproduce many of the complex and dynamic learning interac-
tions occurring in modern operating rooms and variables such as
the view angle, surgeon instrument choice and instrument
intensities were controlled. As simulation platforms advance and
incorporate more detailed real-life interactions, more comprehen-
sive assessments can be generated by the ICEMS. For training this
supervised deep learning application, each data point of the
performance of expert and novices was given the same score
(expert: 1.00, novice: −1.00) throughout the task, allowing the
algorithms to learn both extremes of the skill spectrum. However,
individuals may not always perform in line with their expertise
levels. In other words, skilled individuals may perform closer to

less-skilled level in certain parts of the procedure and vice versa.
Nevertheless, the magnitude of the data allowed algorithms to
learn from the two end-skill levels and our system provided a
granular differentiation across expertise levels as well as between
trainee levels. We defined trainee expertise level based on
operative exposure or year in training. However, trainee skill
levels may not be completely consistent with these parameters
and many other factors may also affect trainee technical skill,
including trainee inherent ability or the type of exposure to
operative skills23 (Supplementary Table 3). By quantifying skills,
our application addresses an important limitation for future
studies to track trainee learning and explore trainee learning
patterns43. Our study involved small number of participants from a
single institution. With a broader cohort, the generalizability of our
model can be increased.
This work, being limited to a previously collected data, provided

a validation for the assessment module. An ongoing randomized
control trial (ClinicalTrials.gov Identifier: NCT05168150) is addres-
sing the efficiency and validation of coaching and risk detection
modules by providing feedback to trainees while tracking their
improvement by the assessment module.
As newer technologies44 and techniques such as reservoir

computing45,46 become available, further progress can be made in
the applications of continuous technical skill assessment, feedback
and operative risk detection using newer and existing datasets.
With the ongoing pandemic, limiting human contact became

an essential practice and the present educational paradigms are
being re-evaluated47. Virtual reality simulators provided with
assessment and coaching modules are self-practicing intelligent
tools, which may aid trainees and educators navigate the ever-
evolving landscape that learners will face.
This work presents a technical skills continuous assessment

application built using expert surgeon data, with predictive
validity across a training program on surgical trainee perfor-
mance16,35. This deep learning application demonstrated a
granular differentiation across expertise and between resident
levels. The ICEMS offers a generalizable and objective continuous
assessment of surgical bimanual skills which may have implica-
tions in the assessment and training of procedural interventions.

METHODS
Setting
Data of this consecutive retrospective case series study was collected at a
single time point between March 2015 to May 2016, with no follow-up.
Neurosurgeons, neurosurgical fellows, and residents from one Canadian
university were invited to participate in this study at the Neurosurgical
Simulation and Artificial Intelligence (AI) Learning Centre, McGill University.
Medical students who expressed interest in neurosurgery or were rotating
on the neurosurgical service were also invited to take part. Participant data
was anonymized. All procedures followed were in accordance with the
ethical standards of the responsible committee on human experimentation
(institutional and national) and with the Declaration of Helsinki48. This
study was approved by the McGill University Health Centre Research Ethics
Board, Neurosciences-Psychiatry and all participants signed an approved
consent form before trial participation. This report adheres to guidelines
for best practices in reporting studies on machine learning to assess
surgical expertise in virtual reality simulation, reporting observational
studies and the reporting of studies developing and validating a prediction
model, as applicable49–52.

Simulation
Participants carried out a simulated subpial tumor resection 5 times
followed by a simulated complex brain tumor resection (Fig. 3), employing
a simulated ultrasonic aspirator in the dominant hand and a simulated
bipolar forceps in the non-dominant hand, using the NeuroVR high-fidelity
simulation platform (CAE Healthcare, Montreal, Canada). These tasks were
designed to replicate the high-risk complex subpial brain tumor resection
task12. Participants were given verbal and written instructions to remove
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the tumor completely while minimizing bleeding and injury to surrounding
tissue. Simulation data was recorded by the NeuroVR platform in 0.02-s
increments (50-recording per second).

Performance metrics
Before any processing, the raw data underwent interpolation to regularize
the timing of data points. Sixteen performance metrics were extracted
from raw simulation data, at 0.2 s intervals, based on our previous studies,
representing five essential aspect of the operative performance: safety,
quality, efficiency, bimanual cognitive and movement14,23,31,53–59.
Although, deep learning does not require metric extraction, The ICEMS is
developed as a training and feedback tool, therefore particular attention is
given to develop the system on features which a trainee can understand
and learn. The performance metrics are listed in Fig. 4.

Data preparation before AI application
The data comprised a total of 156 tasks (neurosurgeons: 84 tasks, medical
students: 72 tasks) was randomly divided into three different subsets as
training (70%, a total of 107 tasks), validation (15%, a total of 24 tasks) and
testing (15%, a total of 24 tasks) dataset, to provide independent
verification and validation (Fig. 2)60. Each individual’s performance data
was always kept in the same subset. The performance metrics were
normalized by z-score normalization, using the mean and standard
deviation values based on the training set. Since the algorithm was
designed as a ‘regression’model where the output feature is predicted as a
continuous variable, the categories of expertise levels were transformed
into numbers where neurosurgeons (experts) and medical students
(novices) were represented as ‘1’ and ‘−1’ respectively, at 0.2-s intervals.
Assessment could be as frequent as 0.02 s (50 decisions a second) however
we limited the decisions to 0.2 s (5 decisions per second) as more frequent
decisions may overwhelm human perception. Considering the z-score
normalization, ‘1’ and ‘−1’ represented one standard deviation above and
below the mean performance, these values determined the two end of the
performance (expert versus novice) of neurosurgical skill. This arrangement
allowed not only detecting the two end levels of surgical performance but
also the assessment of the performance spectrum in between.

Algorithm design and AI training
Long-short term memory (LSTM) network is favorable for time-series
performance analysis where long-term relations are important18–20. We
utilized a supervised learning technique and designed our algorithm as a
regression model. Our LSTM network was designed to minimize the
computational burden (Supplementary Fig. 1). The algorithm composed the
first input sequence layer, two unidirectional LSTM layers, a fully connected
layer, and a regression layer. Two dropout layers were used, after each LSTM
layer, to help avoid overfitting. The number of nodes used for LSTM layers
was calculated by adding one (1) to the number of input metrics
(performance metrics). Sequence-to-sequence supervised learning was
used. More complex designs can be developed, and the performance can
be compared to our design. During the training, Adam (adaptive moment
estimation) optimizer was utilized with a starting learning rate of 1e-3,
decreased by x0.1 every 25 epochs. Minibatch size was 18, determined as
the number of trials in the training set (108) divided by the number of
repeats per person (6). Shuffling was used at every epoch. The training was
performed with 1000 epochs monitoring root-mean-squared-error values
visually (Supplementary Table 1), using NVIDIA GeForce GTX 660 (6.0 Gbps).

Assessing trainee performance
The trained algorithm was used to make an assessment at 0.2-s intervals
considering 16 performance metrics. Assessment was made as a continuous
variable from ‘1’ expert level to ‘−1’ novice level while any score above ‘1’ or
below ‘−1’ was also allowed. The data from 24 neurosurgical trainee
participants (six trials per participant) on 144 tasks was used to test the
algorithm performance. An average score was calculated for each task and
task scores were averaged across six trials for each participant.

Statistics
A one-way ANOVA and the post hoc analysis were conducted to compare
the average performance score of experts, senior trainees, junior trainees,
and novices. A linear regression analysis was conducted to compare
trainee average score to that trainee year of training. All data analysis,

algorithm training and statistics were carried out using MATLAB (The
MathWorks Inc.) release 2020a and IBM SPSS Statistics, Version 27 by codes
written by the authors.

Providing coaching and risk assessment
Three algorithms were developed to provide expert level coaching related
to (1) aspirator force utilization, (2) bipolar forceps force utilization, and (3)
instrument tip separation distance, outputting these features. While
making the predictions for expert-level coaching, the expertise level was
inputted as an expert ‘1’ throughout the task. Two other algorithms had
output predictions for bleeding and non-tumor tissue injury risks. While
making the predictions for risk assessment, the expertise level was
inputted aligned with the expertise level of the user (expert: ‘1’, seniors:
‘0.33’, juniors: ‘−0.33’, medical student: ‘−1’). More detailed information
about input and output features can be found at the Supplementary Table
2. A future study may address the testing and validation of coaching and
risk detection modules of the ICEMS.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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