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A B S T R A C T   

Background: Virtual and augmented reality surgical simulators, integrated with machine learning, are becoming 
essential for training psychomotor skills, and analyzing surgical performance. Despite the promise of methods 
like the Connection Weights Algorithm, the small sample sizes (small number of participants (N)) typical of these 
trials challenge the generalizability and robustness of models. Approaches like data augmentation and transfer 
learning from models trained on similar surgical tasks address these limitations. 
Objective: To demonstrate the efficacy of artificial neural network and transfer learning algorithms in evaluating 
virtual surgical performances, applied to a simulated oblique lateral lumbar interbody fusion technique in an 
augmented and virtual reality simulator. 
Design: The study developed and integrated artificial neural network algorithms within a novel simulator plat-
form, using data from the simulated tasks to generate 276 performance metrics across motion, safety, and ef-
ficiency. Innovatively, it applies transfer learning from a pre-trained ANN model developed for a similar spinal 
simulator, enhancing the training process, and addressing the challenge of small datasets. 
Setting: Musculoskeletal Biomechanics Research Lab; Neurosurgical Simulation and Artificial Intelligence 
Learning Centre, McGill University, Montreal, Canada. 
Participants: Twenty-seven participants divided into 3 groups: 9 post-residents, 6 senior and 12 junior residents. 
Results: Two models, a stand-alone model trained from scratch and another leveraging transfer learning, were 
trained on nine selected surgical metrics achieving 75 % and 87.5 % testing accuracy respectively. 
Conclusions: This study presents a novel blueprint for addressing limited datasets in surgical simulations through 
the strategic use of transfer learning and data augmentation. It also evaluates and reinforces the application of 
the Connection Weights Algorithm from our previous publication. Together, these methodologies not only 
enhance the precision of performance classification but also advance the validation of surgical training platforms.   

1. Introduction 

The use of virtual (VR) and augmented reality (AR) surgical simu-
lators in training and evaluating surgical skills is gaining popularity 
supported by studies highlighting their effectiveness [1]. The integra-
tion of haptic technology, providing real-time force-feedback, enhances 
the authenticity of the training programs [2]. Haptics in surgical simu-
lations allow trainees to develop a tactile understanding of procedures 

before being involved with patient surgical procedures, leading to 
improved learning outcomes, even when using non-realistic voxel-based 
gaming engine forces. However, our group strives to show the added 
benefits of incorporating realistic physics-based haptic feedback on 
learning outcomes through detailed quantification of surgical forces 
from cadaver studies [3,4]. This aspect is deemed crucial in the devel-
opment of new surgical simulator platforms, particularly for challenging 
and tactile-dependent minimally invasive spinal surgeries (MISS) [5,6]. 
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One such platform is the physics-based VR/AR spinal surgical simulator 
developed by our group to simulate the Oblique Lateral Lumbar Inter-
body Fusion (OLLIF) surgery. 

VR/AR simulators generate extensive data of user psychomotor in-
teractions in simulations. Our group has demonstrated that converting 
this data into performance metrics effectively classifies individuals by 
expertise level and aids in enhancing their performance [7–10]. This 
naturally gave rise to the utility of machine learning (ML) – a subset of 
artificial intelligence (AI) – in exploiting these large data sets for more 
detailed classification and to enhance the training capabilities of simu-
lators [11]. Multilayered perceptron (MLP) artificial neural networks 
(ANNs), a deeper subset of ML, has shown promise in the domain of 
surgical simulation due to their ability to learn and model complex 
non-linear patterns within the data collected during simulated tasks 
[12]. ANNs resemble biological neural networks; they consist of multi-
ple interconnected neurons organized into layers, with each layer pro-
cessing data and transferring it to the next layer [12]. Despite the 
effectiveness of ML algorithms in classifying surgical simulation per-
formance, there are limitations. One limitation is the focus on classifi-
cation, while neglecting to delve deeper into the underlying reasons for 
the classifications or quantify the relative importance of performance 
metrics used by the ML models [13–15]. Our previous study, on VR 
anterior cervical discectomy and fusion simulation, addressed this lim-
itation by introducing a novel application of the Connection Weights 
Algorithm (CWA) on multi-layered ANNs [16]. The CWA, originally 
created by Olden and Jackson [15], provided an improved under-
standing of the contributions of individual performance metrics to the 
classification task in one-layered ANNs. By employing this novel 
approach on a multi-layered ANN, this study aimed to demonstrate the 
usefulness of the approach in identifying the relative importance of each 
metric in complex models. 

Another limitation associated with deploying ML algorithms with 
surgical simulations is the small dataset (small N) due to difficulties in 
recruiting participants, especially for simulators of less common surgical 
procedures. A potential solution to address this issue is data augmen-
tation, which introduces slight variations in the form of jittering (i.e. 
noise) or scaling to the original dataset to increase the size, thus aids in 
preventing overfitting and improving generalizability of the model [17]. 
Transfer learning is another effective strategy, where the insights from a 

model trained on a similar, but distinct task are utilized [18]. By 
applying transfer learning, one may build on existing models developed 
for similar surgical simulators to create more robust systems. 

To that end, the novelty of the current study lies in two key areas: 1) 
Classify surgical performance and identify the key performance metrics 
essential in determining surgical expertise using a novel physics-based 
VR/AR spinal surgical simulator. This approach builds on our previous 
work, further enriched by examining the advantages of data augmen-
tation and transfer learning in surgical simulators. Specifically, we adapt 
the learning from an ANN model, previously developed for a similar 
spinal simulator, to our new model, and rigorously assess its perfor-
mance. 2) Examine the novel CWA approach developed by the authors 
by applying it to both the newly developed ANN and the ANN based on 
transfer learning. These models are further validated using the permu-
tation feature importance, a well-established technique for interpreting 
ML models. 

2. Material and methods 

2.1. The simulator platform & the simulated scenario 

The platform used in this study is a novel VR/AR surgical simulator 
developed by McGill University in affiliation with CAE Healthcare and 
Depuy Synthes part of Johnson & Johnson. The platform consists of a 
high-performance gaming laptop (i7-8750H), two flat panel monitors to 
match the interface in the operating room, and a haptic ENTACT W3D 
device generating realistic force feedback, (Fig. 1a). The simulation 
focusses on three phases of an OLLIF surgery: gaining access through the 
back muscles, removing the intervertebral disc, and inserting graft and a 
spinal cage. The detailed steps along with the surgical tools used at each 
phase are shown in Fig. 1b. 

Phase 1 of the simulated surgery includes gaining access to the sur-
gical area using a multiprobe tool. Phase 2 requires the participant to 
first use a burr tool for drilling and performing a facetectomy, followed 
by using the Concord tool’s suction mechanism to remove the disc. In 
Phase 3, the participant is required to insert a graft and a cage using the 
graft and cage insertion tools. The force feedback replicates the resis-
tance provided by the instruments when penetrating through the mus-
cles during an actual surgery using tailored empirical response curves 

Fig. 1. (a) Simulator layout. Right screen indicates the instruction of the surgery process. The haptic device and benchtop model are in the middle. Left screen 
indicates the four camera views that demonstrate the surgical area. (b) The three phases of the simulated surgery: Phase 1 includes gaining access to the disc using a 
Multitool; Phase 2 includes facetectomy using a Burr Tool followed by a discectomy using a Concord Tool; Phase 3 includes graft and cage insertions using the 
respective tools. 
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extracted during cadaver experiments [4]. The empirical curves have 
implicitly incorporated the non-linearity and viscoelasticity of realistic 
physiological tissue responses [4]. The current study focuses on the first 
two phases, gaining access and facetectomy & discectomy. Prior to the 
start of the simulation, participants were made aware of all steps and 
instruments needed to complete the procedure via verbal and written 
instructions. No time limit was imposed on participants. 

2.2. Participants 

This study utilized participant data previously collected for the face, 
content, and construct validation study of this simulator platform. 
Thirty-four participants were initially recruited to perform the virtual 
OLLIF scenario. Seven expert orthopedic surgeons out of the 34 partic-
ipants were recruited in a side-by-side cadaver trial, where participants 
completed a minimally invasive spinal fusion surgery on a cadaver, then 
immediately repeated the identical procedure on the surgical trainer/ 
simulator. The remaining participants completed the trial without per-
forming the cadaver surgery. Due to errors during the simulation runs 7 
participant data could not be utilized. Therefore 27 individuals were 
included in the current analysis: 12 post-residents, 6 senior residents, 
and 9 junior residents. Table 1 and Table 2 outline the demographics and 
the difference in experiences and knowledge of the 27 participants. The 
participants were divided into three groups: A post-resident group (3 
neurosurgeons, 5 spine surgeons, 2 spine fellows, and 2 neurosurgical 
fellows), a Senior-Resident group (4 PGY 4–6 neurosurgery and 2 PGY 
4–5 orthopaedics residents), and a Junior-Resident group (4 PGY 1–3 
neurosurgery and 5 PGY 1–3 orthopaedics residents). This study was 
approved by the Institutional Review Board (IRB) of the Faculty of 
Medicine and Health Sciences at McGill University. All participants 
signed an approved written consent form prior to providing de-
mographic and other information and beginning the simulation of the 
virtual reality spine surgery simulation which took on average 60 min to 
complete. This article follows the Strengthening the Reporting of 
Observational Studies in Epidemiology (STROBE) and Best Practices for 
Machine Learning to Assess Surgical Expertise [19,20]. 

2.3. Machine learning analysis 

A systematic approach was used in integrating a MLP ANN in clas-
sifying the virtual surgical performance. As illustrated in Fig. 2, the 
methodology can be divided into three main steps: Data collection & 
Preprocessing, Feature Selection & Data Augmentation, and Machine 
Learning Model Development. While the first two steps of the method-
ology were implemented only once, this study develops and compares 
two distinct MLP ANN architectures: a MLP ANN constructed from 
scratch and another leveraging transfer learning from a previously 
trained two layered ANN model. the current study expands on the 
methodology developed in our previous publication to include data 
augmentation at the feature selection phase and the use of transfer 
learning in the model development phase [16]. 

2.3.1. Data Collection & Preprocessing 
During each virtual reality surgical simulation, the platform tracked 

tool use, converting this data into metrics to evaluate participant per-
formance, as previously detailed in our validity studies [3]. In simula-
tion, 73 variables were recorded including tool position, time, angles, 
forces, volumes removed, and contacts with anatomical structures. This 
data was processed to generate metrics assessing participant perfor-
mance. For example, tool position and time data were used to calculate 
velocities, forces and contacts assessed removal effectiveness of struc-
tures, and combined position and contacts measured interaction path 
lengths. Initially, 276 features were identified through expert opinions, 
literature on spinal fusion surgery, and novel data-derived metrics. 
However, this extensive feature set risked overfitting due to the “curse of 
dimensionality”, leading to a less interpretable model [17]. This is 
further exacerbated in cases of small datasets as in the current context. 
The current study utilized a combination of feature reduction, data 
augmentation, and transfer learning in a carefully constructed meth-
odology to overcome these limitations. 

All generated metrics were assigned into one of three main cate-
gories: motion, safety, or efficiency. The performance metrics were then 
normalized using z-score normalization to reduce impact of outliers. 
Data extraction, metrics generation and z-score normalization were 
done in Python (Version 3.7, OR USA). An initial feature reduction 
removed features with zero or near-zero variance and those highly 
correlated, reducing the feature count to 168. 

2.3.2. Feature selection & data augmentation 
Developing a machine learning model involves key steps for optimal 

and generalizable outcomes. This study’s iterative approach, depicted in 
Fig. 2, refined the feature space to essential metrics, addressing the 
“curse of dimensionality” and removing unimportant features. Initially, 
the dataset, with underrepresented classes, underwent a stratified split 
into training, validation, and testing sets for class balance (Table 3). 
Following the data split, a sequential forward selection (SFS) algorithm 
with a built-in machine learning model was used to remove irrelevant 
metrics that may not be useful in distinguishing surgical performance. 
The SFS algorithm iteratively builds and evaluates optimal feature 
subsets, continuing until identifying the optimal subset. This study 
employed a 6-fold cross validation Neural Network model as part of the 
SFS algorithms for feature selection. The data split was firstly passed into 
the SFS algorithm, which reduced the feature space from 168 features to 
16 features (Table 4). 

With the refined feature set of 16, data augmentation in the form of 
data jittering was used to address the limitations of small dataset as well 
as imbalanced classes. This was specifically used to balance the under-
represented Junior and Senior Resident classes, achieving an equal 
distribution of 12 data points per class. Data jittering introduces small 
variations or “noise” to the existing data by randomly sampling from a 

Table 1 
Demographics of the post-resident, senior-resident, and junior-resident groups.   

Junior Residents (n =
9) 

Senior Residents (n =
6) 

Post-Residents (n =
12) 

Male 8 5 11 
Female 1 1 1  

Level of Training Surgical Specialty 

Neurosurgery Orthopaedic Surgery 

PGY 1-3 4 5 
PGY 4-6 4 2 
Fellows 2 2 
Consultants 3 5  

Table 2 
Differences in previous experience, knowledge, and comfort level of the groups.   

Junior 
Residents 

Senior 
Residents 

Post- 
Residents 

No. of individuals in each group who: 
Previous experience using a 

surgical simulator 
2 (22 %) 5 (83 %) 10 (83 %) 

Assisted on a TLIF 7 (77 %) 6 (100 %) 10 (83 %) 
Performed a TLIF solo 0 (0 %) 0 (0 %) 7 (58 %) 
Medina self-rating on 5-point Likert scale: 
Textbook Knowledge of a TLIF 3.0 (3.0–4.0) 3.0 (3.0–4.0) 3.5 

(1.0–5.0) 
Surgical Knowledge of a TLIF 3.0 (2.0–4.0) 3.0 (3.0–4.0) 3.5 

(1.0–5.0) 
TLIF comfort level with a 

consultant in the room 
3.0 (1.0–4.0) 4.0 (2.0–5.0) 4.5 

(2.0–5.0) 
TLIF comfort level solo 1.0 (1.0–2.0) 2.0 (1.0–4.0) 3.0 

(1.0–5.0)  
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group of participants and applying a slight random noise. In this study, a 
random gaussian noise centered at 0 with a standard deviation of 0.01 
was used. This value was chosen to mimic realistic variations expected 
in surgical settings, such as those due to hand tremors, tool handling, or 
dexterity control. By introducing a jitter that represents only 1 % of the 
standard deviation in the normalized data, the model effectively in-
corporates subtle yet significant variations that enhance its robustness 
and generalizability without compromising the integrity of the data. 
Although scaling and jittering were both potential augmentation 
methods, jittering was more appropriate than scaling in the context of 
surgical performance metrics. As compared to data scaling, data jittering 
provides: (1) a natural variability in the data that may arise from hand 
tremors, tool handling errors, and dexterity control; (2) preserves real-
istic values of surgical performance features – for example scaling forces 
might lead to unrealistic values; (3) avoids skewing feature distribu-
tions; and (4) aligns well with the pre-normalized data. 

To prevent information leakage from the testing set during model 
development, datapoints from the original test set were isolated directly 
after applying data augmentation. The rest were re-split, allocating 78 % 
to training and validation sets. These subsets were then passed through 
the SFS algorithm yielding a final of 9 surgical performance metrics. 
With the refined and augmented data, the machine learning model 
development was initiated. The split dataset and the nine features 

selected in the final step are shown in Table 5 and Table 6 respectively. 

2.3.3. Machine learning model development 
Following the feature selection & data augmentation step, building 

and training the MLP ANNs were initiated. The same methods for 
training and optimizing hyperparameters were applied to both models: 
the MLP ANN built from scratch and the one developed using transfer 
learning. 

A PyTorch framework was used for building and training our MLP 
models, as detailed in our prior publication [16], and inspired by 
frameworks outlined by Paszke et al. [21] and Chintala [22]. The models 
were trained using cross-entropy loss and stochastic gradient descent 
with momentum (SGD with momentum). The ReLu activation function, 
along with Lecun weights initialization, was implemented as per 
PyTorch’s default settings. To avoid overfitting, early stopping was 
incorporated based on the validation set’s loss and accuracy: training 
stopped if validation loss increased, or accuracy decreased consistently 
over 200 epochs. Our algorithm also saved model parameters upon 
validation loss improvement and kept a record of training and validation 
accuracies and loss values. 

An MLP architecture consists of multiple interconnected hidden 
neurons within multiple layers as presented in Fig. 3. Optimizing an MLP 
involves tuning various hyperparameters related to both the architec-
ture and the training process. For the model architecture, key hyper-
parameters include the number of hidden layers and hidden units. For 
training the MLP with SGD, important hyperparameters are the learning 
rate and momentum of the SGD algorithm. Table 7 presents a provides a 
comprehensive list of potential hyperparameter values, selected based 
on best practices in literature for using SGD with momentum in MLP 
neural networks [17]. This study advances beyond the manual, 
semi-systematic grid search approach of our previous publication, 

Fig. 2. The study methodology consists of three main steps: Data Collection & Preprocessing, Feature Selection & Data Augmentation, and Machine Learning Model 
Development. 

Table 3 
First stratified split of the original dataset into training, validation, and testing 
sets.  

Classes Original 
Dataset 

Training 
Dataset 

Validation 
Dataset 

Testing 
Dataset 

Junior 9 5 2 2 
Senior 6 4 1 1 
Post 12 7 2 3 
Total 27 16 5 6  

Table 4 
SFS average 6-fold validation accuracy during the 2 passes of the Feature Se-
lection & Data Augmentation Step.  

Features Prior to SFS Features Post SFS Avg. SFS 6-Fold Validation Accuracy 

168 16 82.5 % 
16 9 92.5 %  

Table 5 
Final stratified split of the dataset into training, validation, and testing sets.  

Classes Original 
Dataset 

Training 
Dataset 

Validation 
Dataset 

Testing 
Dataset 

Junior 12 7 2 3 
Senior 12 8 2 2 
Post 12 7 2 3 
Total 36 22 6 8  

Table 6 
Nine final metrics resulted from the second pass into the SFS algorithm used in 
this study.  

Metric 
Category 

Metric Description Metric 
Abbreviation 

Motion Sign changes of the Multitool acceleration in 
the X direction 

signax Multitool 

Mean jerk in the Y direction while using the 
Burr Tool 

JYBurrToolmean 

Mean velocity while using the Burr Tool vBurrToolmean 
Mean velocity during the Discectomy Surgical 
Step 

vDiscectomymean 

Safety Mean torque exerted by the Burr Tool TBurrToolmean 

Mean force exerted on the NP during the 
Gaining Access Surgical Step 

FNPGainingAccessmean 

Mean force exerted on the M5 Muscle during 
the Discectomy Surgical Step 

FM5Discectomymean 

Mean force exerted on the M6 Muscle while 
using the Concorde tool 

FM6ConcToolmean 

Mean force exerted on the SAP while using the 
Burr tool 

FSAPBurrToolmean  
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implementing a systematic grid search algorithm to evaluate all possible 
models created from the hyperparameter combinations. This approach 
was used for both the standalone MLP and the MLP with transfer 
learning. The grid search was aimed to identify the best performing 
models, using model performance on the validation set as the primary 
criterion, similar to our approach with early stopping. 

To enhance performance and mitigate the limitations of a small 
dataset, transfer learning was implemented, using a 2-layered ANN 
model previously developed for the Sim-Ortho simulator, a VR simulator 
for an annulus incision task in anterior cervical discectomy and fusion 
(ACDF) scenarios by OSSimTech [16]. The hyperparameters and archi-
tecture of this model are detailed in Table 8 and Fig. 4. Transfer learning 
extracts knowledge from models trained on similar tasks [18]. Multiple 
approaches exist to transfer the knowledge learnt by a previously built 
ML model. Two main methods are frequently highlighted in the litera-
ture: fine-tuning a pre-trained model or using it as a feature generator 
[17,18]. Fine tuning the model to adapt to the new dataset is seen as a 
continuation of the model’s training phase on the new dataset. This 
method is extensively used in deep learning applications where firstly 
the outmost layers are fine tuned (shallow tuning) before incrementally 
engaging and fine tuning the entirety of the layers (deep tuning). This 
process leverages the idea that an ANN’s last layers hold task-specific 
high-level features, while the initial layers contain low-level features 
common to many tasks [18]. However, overfitting is a important 
drawback of this method when dealing with ANNs with few layers 
applied on small datasets, as in the current application. 

Another approach is to leverage the knowledge stored in the trained 
model by freezing its layers and appending new set of layers to the 
output of the learnt model. This method is also known as the feature 
extractor method as the learnt layers act as a sophisticated filter that 

transforms the input data into high-level features that result in better 
classifications, especially in small datasets. This approach mitigates 
overfitting and improves model generalizability. In this study, this 
method was adopted by freezing the pre-trained layers of the previously 
developed model and appending new, trainable layers. This was done by 
loading the old model and setting it into evaluation mode, before 
accessing the output of the second hidden layer to append the new and 
trainable layers. The training of the new layers followed the same 
approach described above for the stand alone MLP, including the sys-
tematic grid search to find the optimal combination of hyperparameters. 

Table 9 displays the top-performing one-layer, two-layer, and three- 
layer standalone ANNs, as well as those using transfer learning, deter-
mined by our search criteria. Notably, the three-layered standalone ANN 
and the one appended layer transfer learning model showed superior 
performance on the validation set. The table also details the optimal 
hyperparameters for each model. Table 10 details the hyperparameters 
of the two top-performing models, including architecture and optimi-
zation parameters. 

Fig. 5 illustrates their training progress, where validation accuracy 
and loss were assessed after each training epoch. Early stopping was 
frequently employed, training stopped at 3500 epochs for the standalone 
model and 890 epochs for the transfer model (Fig. 5). 

The Connection Weights Algorithm, originally developed by Olden 
and Jackson [15], was used to understand and quantify the relative 
impact of each metric on the classification task. The algorithm was 
developed for one-hidden layer networks and assigns a distinct weight 
for each feature-class pair by summing the products of all the connection 
weights that relate an input to an output, as demonstrated by Fig. 6 and 
Equation (1). In our previous publication, the Algorithm was adapted to 
a multilayer neural network to calculate the Connection Weights Prod-
uct (CWP) [16]. More specifically, as demonstrated by Fig. 7 and 
Equation (2), the study adapted the algorithm to a two hidden layer 
network – the model used as the basis of the transfer learning model in 
the current study. 

CWPx,z =
∑M

m=1
wxmqmz (1)  

CWPx,z =
∑M

m=1

∑N

n=1
wxnvnmqmz (2)  

Where CWPx,z is the connection weight product of an input metric x to a 
class output z, wxn is the weight connecting an input metric x to a first 
hidden layer neuron n, vnm is the weight connecting a first hidden layer 
neuron n to a second hidden layer neuron m, and qmz is the weight 
connecting a second hidden neuron m to an output z. As demonstrated in 

Fig. 3. A general MLP diagram showing the input layer, the hidden layers and 
the interconnected hidden units, and the output layer. 

Table 7 
Hyperparameters potential values.  

No. of Hidden Layers 1 2 3   

No. of Hidden Units 6 10 20 40 100 
Learning Rate 0.0001 0.0005 0.001 0.005 0.01 
Momentum 0.6 0.7 0.8 0.9 1  

Table 8 
Pre-Trained Model in the side study performed on the Sim-Ortho VR simulator 
developed by OSSimTechTM  

Hidden Inputs Per 
Layer 

Hidden 
Layers 

SGD Learning Rate SGD Momentum 

40 2 0.001 0.7  

Fig. 4. Pre-trained model architecture.  
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Fig. 7 and Equation (2), the new adaptation of the algorithm can be seen 
as computing and subsequently adding the original algorithm M times. 
Similarly, the calculation can be expanded to a general MLP ANN with L 
hidden layers as follows: 

CWPx,z =
∑N1

i1=1

∑N2

i2=1
⋯

∑NL

iL=1
w(0)

xi1 w(1)
i1 i2 ⋯w(L− 1)

iL− 1 iL w
(L)

iLz (3)  

Where w(l)
ij is the weight connecting the ith neuron in the lth hidden layer 

to the jth neuron in the (l + 1)th layer. As with the original algorithm, the 
CWP can attain both positive and negative values, outlining the relative 
contribution of each input feature to each output in both magnitude and 
sign. The sign of the CWP indicates whether a high or a low feature value 
results in a higher probability of a certain class. CWPs can be further 
leveraged to obtain the relative importance of the features to each class 

Table 9 
The best performing models in each of the one-layered, two-layered, and three-layered ANNs.  

Model Hidden Inputs Per Layer Hidden Layers SGD Learning Rate SGD Momentum Validation Accuracy Validation Loss 

Stand Alone Model 20 1 0.001 0.8 66.67 % 0.32 
40 2 0.001 0.7 83.33 % 0.26 
20 3 0.0005 0.8 100 % 0.14 

Transfer Learning Model 6 1Ŧ 0.0005 0.6 100 % 0.01 
6 2Ŧ 0.001 0.6 83.33 % 0.04 
20 3Ŧ 0.005 0.6 83.33 % 0.05 

Ŧ The hidden layers indicated in the MLP ANN with transfer learning are the new appended layers after the 2 pre-trained hidden layers. 

Table 10 
Best performing model found within the grid search.  

Model Hidden 
Inputs Per 
Layer 

Hidden 
Layers 

SGD 
Learning 
Rate 

SGD 
Momentum 

Stand Alone Model 20 3 0.0005 0.8 

Transfer 
Learning 
Model 

New 
Layers 

6 1 0.0005 0.6 

Pre- 
Trained 
Layers 

40 2 N/A Ŧ N/A Ŧ 

Ŧ The Pre-Trained Layers are frozen and therefore not updated during training. 

Fig. 5. The performance of the models at each training epoch: (a) the accuracy of the optimal stand-alone model on the training and validation sets at each training 
epoch; (b) the value of the loss function of optimal stand-alone model on the training and validation sets at each training epoch; (c) the accuracy of the optimal model 
with transfer learning on the training and validation sets at each training epoch; (d) the value of the loss function of optimal model with transfer learning on the 
training and validation sets at each training epoch. 
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by determining the ratio of the magnitude of a feature CWP to the sum of 
the magnitudes of all the features CWPs for that certain class. 

In this study, the novel adaptation of the Connection Weights Algo-
rithm was further validated by comparing its results with the permuta-
tion feature importance method, as previously outlined [16]. This 
method evaluates feature importance by observing the impact on model 
performance when a feature’s values are randomly shuffled [23]. A 
feature is deemed important if model performance, assessed by the loss 
function and prediction accuracy, significantly worsens after permuta-
tion. Conversely, a negligible impact indicates a less important feature. 
This analysis, similar to a sensitivity analysis in engineering, was con-
ducted using both training and testing sets for both the standalone ANN 
and the transfer learning ANN. 

3. Results 

3.1. Surgical performance metrics 

The surgical performance metrics were categorized into motion, 
safety, and efficiency. Initially, 276 metrics were generated for each 
participant, but after feature selection and data augmentation, only 9 
important metrics remained, primarily from the motion and safety cat-
egories (Table 6). This differs from the construct validity analysis in our 
validation studies [3]. These nine surgical performance metrics served 
as inputs for the developed ANNs, which had the following architectures 
presented in Figs. 8 and 9. 

Fig. 6. Schematic of a one hidden layer network demonstrating the weights 
that connect the first input node to the first output node. 

Fig. 7. Schematic of a two hidden layer network demonstrating the weights that connect the first input node to the first output node. To simplify the illustration, the 
connection weights are broken into multiple schematics (a–d) by varying the last hidden layer m from 1 to M. 
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3.2. Accuracy in classification of surgical performance 

The final standalone MLP model and the MLP with transfer learning 
were trained for 3500 and 890 epochs, respectively. Their classification 
accuracies are detailed in Table 11, with performance visualized in 
confusion matrices (Figs. 10 and 11). A confusion matrix provides a 
visual representation of an ANN’s performance. For both models, 
matrices were generated for training (22 participants), validation (6 
participants), and testing sets (8 participants). The standalone MLP 
achieved 100 %, 100 %, and 75 % accuracies across these sets, while the 
MLP with transfer learning attained 95.45 %, 100 %, and 87.5 %, 
respectively. 

3.3. Surgical performance metrics importance 

This study adapted the Connection Weights Algorithm for multilay-
ered ANNs and applied it to two MLP ANN architectures: one built from 
scratch and the other using transfer learning. The results were then 
compared to the permutation feature importance method. Table 12, 
Table 13, and Table 14 present the relative importance of the nine 
surgical performance metrics for both the standalone MLP ANN and the 
transfer learning MLP ANN. They detail the CWPs rankings and per-
mutation feature importance results for both test and train sets across 
post-resident, senior-resident, and junior-resident groups. Notably, the 
CWP importance order varies for each surgical level. Table A1–A10 in 
Appendix provide detailed CWP values, feature relative importance, and 
permutation feature importance for the training and testing sets for each 
surgical class group. Fig. 12 presents the learning patterns that are 
exhibited in each input feature for the stand alone model, illustrating the 
CWPs for each feature across the three surgical levels. 

4. Discussion 

4.1. Performance of the MLP ANN models 

The first objective of the study was to classify surgical performance 
and identify the relative importance of surgical performance metrics on 
the novel OLLIF AR/VR simulator. Focusing on the “gaining access” and 

Fig. 8. Model architecture of the final stand-alone MLP ANN model developed from scratch demonstrating the input surgical metrics, the number of hidden units and 
layers, as well as the output variables. 

Fig. 9. Model architecture of the final MLP ANN model developed from transfer learning demonstrating the input surgical metrics, the number of hidden units and 
layers, as well as the output variables. 

Table 11 
Accuracy performance of the trained model on the training set, validation set, 
and testing set.  

Model No. of 
Training 
Epochs 

Training 
Accuracy (%) 

Validation 
Accuracy (%) 

Testing 
Accuracy 
(%) 

Stand Alone 
Model 

3500 100 100 75 

Transfer 
Learning 
Model 

890 95.45 100 87.5  
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Fig. 10. Confusion matrices highlighting the performance of the stand alone MLP ANN model trained from scratch on the: (a) training set, (b) validation set, and (c) 
testing set. 

Fig. 11. Confusion matrices highlighting the performance of the MLP ANN model with transfer learning on the: (a) training set, (b) validation set, and (c) testing set.  

Table 12 
Surgical Performance Metrics Ranking for each model: CWPs & Permutation Importance for Junior Residents.  

Rank Stand-Alone MLP ANN Model Transfer Learning MLP ANN Model 

CWP Rel. Imp. Perm. Feat. Import. - Test Set Perm. Feat. Import. - Train Set CWP Rel. Imp Perm. Feat. Import. - Test Set Perm. Feat. Import. - Train Set 

1 FM5Discectomymean 
FM5Discectomymean FSAPBurToolmean FNPGainingAccessmean FSAPBurToolmean FSAPBurToolmean 

2 vDiscectomymean FNPGainingAccessmean FM5Discectomymean FM5Discectomymean FM6ConcToolmean FM6ConcToolmean 

3 FSAPBurToolmean FM6ConcToolmean FM6ConcToolmean vDiscectomymean FM5Discectomymean FM5Discectomymean 
4 vBurToolmean FSAPBurToolmean FNPGainingAccessmean FSAPBurToolmean FNPGainingAccessmean FNPGainingAccessmean 

5 JYBurToolmean TBurToolmean TBurToolmean signax Multitool JYBurToolmean TBurToolmean 

6 signax Multitool vDiscectomymean vDiscectomymean JYBurToolmean TBurToolmean vDiscectomymean 
7 TBurToolmean vBurToolmean vBurToolmean vBurToolmean vBurToolmean vBurToolmean 
8 FNPGainingAccessmean JYBurToolmean JYBurToolmean FM6ConcToolmean vDiscectomymean JYBurToolmean 

9 FM6ConcToolmean signax Multitool signax Multitool TBurToolmean signax Multitool signax Multitool  

Table 13 
Surgical Performance Metrics Ranking for each model: CWPs & Permutation Importance for Senior-Residents.  

Rank Stand-Alone MLP ANN Model Transfer Learning MLP ANN Model 

CWP Rel. Imp. Perm. Feat. Import. - Test Set Perm. Feat. Import. - Train Set CWP Rel. Imp Perm. Feat. Import. - Test Set Perm. Feat. Import. - Train Set 

1 FM5Discectomymean 
FM5Discectomymean FSAPBurToolmean signax Multitool FSAPBurToolmean FSAPBurToolmean 

2 FSAPBurToolmean FNPGainingAccessmean FM5Discectomymean JYBurToolmean FM6ConcToolmean FM6ConcToolmean 

3 JYBurToolmean FM6ConcToolmean FM6ConcToolmean FNPGainingAccessmean FM5Discectomymean FM5Discectomymean 
4 FNPGainingAccessmean FSAPBurToolmean FNPGainingAccessmean FSAPBurToolmean FNPGainingAccessmean FNPGainingAccessmean 

5 FM6ConcToolmean TBurToolmean TBurToolmean FM5Discectomymean JYBurToolmean TBurToolmean 

6 vBurToolmean vDiscectomymean vDiscectomymean vDiscectomymean TBurToolmean vDiscectomymean 
7 TBurToolmean vBurToolmean vBurToolmean vBurToolmean vBurToolmean vBurToolmean 
8 signax Multitool JYBurToolmean JYBurToolmean TBurToolmean vDiscectomymean JYBurToolmean 

9 vDiscectomymean signax Multitool signax Multitool FM6ConcToolmean signax Multitool signax Multitool  
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“facetectomy and discectomy” steps of the OLLIF simulation, this study 
identified nine critical features for neural network development. Using 
the methodology shown in Fig. 2, two MLP neural networks were suc-
cessfully trained: one from scratch and another using transfer learning. 
Both models achieved high accuracy in classifying the three surgical 
classes, performing well on training (standalone: 100 %, transfer 
learning: 95.45 %), validation (both models: 100 %), and testing sets 
(standalone: 75 %, transfer learning: 87.5 %). These results are within 
the 65 %–97.6 % accuracy range reported in previous studies using 
machine learning for virtual surgical performance classification [8,11, 
16,24,25]. 

Analysis of the misclassified points in both models revealed some 
insights pertaining to the general applicability of the Connection 
Weights Algorithm on multilayered neural networks. More specifically, 
the developed equation was extended for three-layered neural networks 
to be applied on both the model developed from scratch and the one 
using transfer learning. The serendipitous fact that the optimal models 
in both cases led to three layered networks allow for a better comparison 
of the algorithm by removing the number of hidden layers as an influ-
ential factor. Both models share one misclassified junior-resident 
participant as a post-resident, while the stand-alone model had 
another misclassified junior-resident as a senior-resident. Using the 
CWPs from the standalone model (Table A1 – A3), it was observed that 

the two misclassified junior-resident individuals exhibited performance 
traits that resembled senior and post-residents in key overlapping fea-
tures (Table 15). For the junior participant that was misclassified as a 
senior, the participant had positive scores in the mean force applied on 
the M5 muscle during discectomy (z-score of 0.93) and the mean force 
applied on the superior articular process (SAP) while using the burr tool 
(z-score of 0.48). The participant that was misclassified as a post- 
resident had negative scores in the average velocity during the dis-
cectomy step (z-score of − 1.10) and the average velocity while using the 
burr tool (z-score of − 1.19). The z-scores specify the number of standard 
deviations the surgical performance is from the mean values of each 
feature. Thus, the first individual applied higher than average forces on 
both the M5 muscle during discectomy and the SAP while using the burr 
tool; while the other misclassified individual had lower than average 
velocities during the discectomy step and specifically while using the 
burr tool. Based on the CWPs, one interpretation is that these values 
might increase the likelihood of a senior and post resident classification, 
respectively, while they reduce the likelihood of a junior resident clas-
sification (Table 15). A similar analysis was seen in our previous pub-
lication when trying to uncover reasons behind misclassifications in 
multilayered neural networks [16]. 

However, conducting a similar analysis with the transfer learning 
model revealed different insights. Despite the individual’s z-scores 

Table 14 
Surgical Performance Metrics Ranking for each model: CWPs & Permutation Importance for Post-Residents.  

Rank Stand-Alone MLP ANN Model Transfer Learning MLP ANN Model 

CWP Rel. Imp. Perm. Feat. Import. - Test Set Perm. Feat. Import. - Train Set CWP Rel. Imp Perm. Feat. Import. - Test Set Perm. Feat. Import. - Train Set 

1 vDiscectomymean FM5Discectomymean FSAPBurToolmean JYBurToolmean FSAPBurToolmean FSAPBurToolmean 

2 FNPGainingAccessmean FNPGainingAccessmean FM5Discectomymean vDiscectomymean FM6ConcToolmean FM6ConcToolmean 

3 vBurToolmean FM6ConcToolmean FM6ConcToolmean FNPGainingAccessmean FM5Discectomymean FM5Discectomymean 
4 JYBurToolmean FSAPBurToolmean FNPGainingAccessmean FM5Discectomymean FNPGainingAccessmean FNPGainingAccessmean 

5 signax Multitool TBurToolmean TBurToolmean signax Multitool JYBurToolmean TBurToolmean 

6 FM6ConcToolmean vDiscectomymean vDiscectomymean vBurToolmean TBurToolmean vDiscectomymean 
7 TBurToolmean vBurToolmean vBurToolmean TBurToolmean vBurToolmean vBurToolmean 
8 FSAPBurToolmean JYBurToolmean JYBurToolmean FSAPBurToolmean vDiscectomymean JYBurToolmean 

9 FM5Discectomymean signax Multitool signax Multitool FM6ConcToolmean signax Multitool signax Multitool  

Fig. 12. Learning patterns of the Connection Weights Products for each input feature on the Stand-Alone MLP ANN.  
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aligning with the junior-resident group CWPs, a misclassification still 
occurred. A reasonable explanation may be the fact that the two pre- 
trained and transferred layers were frozen during training, thereby 
limiting the network to adapt to the actual input features in both sign 
and magnitude. Transfer learning models with frozen pre-trained layers 
typically act as feature generators, transforming input features into new 
high-level metrics. This would mean that the CWPs of such models adapt 
to the new generated features rather than the actual inputs. While the 
magnitude of the CWP still indicates the relative importance of input 
features in these models, as discussed in the next sections, the inter-
pretation related to the sign of the CWPs becomes less clear. 

4.2. Insights and surgical performance patterns revealed by the ANNs 

Table 12 to Table 14 summarize the selected surgical performance 
features used in training and testing the optimal models, ranking them 
by importance as determined by the Connection Weights Algorithm 
(CWA) and validated by the Permutation Feature Importance algorithm 
on both testing and training sets. This approach was applied to both 
stand-alone and transfer learning models, offering a comprehensive 
view of feature significance in classification. While the permutation 
feature importance rankings remain consistent across the tables, varia-
tions in the CWP columns reflect class-specific calculations for Junior, 
Senior, and Post-resident groups. This differentiation emphasizes the 
unique influence of each feature on the respective surgical classes as 
defined by the CWPs and highlights the importance of a detailed and 
nuanced approach in interpreting the results, given the inherent per-
formance variability between the classes. 

This study utilized the CWA to uncover insights from neural network 
models classifying virtual OLLIF surgical performance. This objective 
was accomplished by extending the previously developed method by the 
authors to apply the CWA on multilayered neural networks to further 
assess its validity. The CWA evaluates the impact of each surgical per-
formance metric (input feature) on different surgical levels (classes) by 
assigning weights for each feature-class pair, calculated by summing the 
products of connection weights from inputs to outputs [14]. These 
weights, known as Connection Weights Products (CWPs), help deter-
mine the relative importance of features for each surgical class. The 
algorithm’s value lies in its ability to quantify each input feature’s 
contribution to each output, both in magnitude and sign. For example, a 
positive (or negative) CWP indicates that a higher (or lower) than 
average feature value correlates with a specific class. The detailed CWPs 
values and their percent of relative importance for both models are 
comprehensively summarized in the Appendix (Table A1–A6). 

To verify the results and validate the applicability of the CWA on 
both model types, the permutation feature importance algorithm was 
developed and applied to each of the two models on both the training 
and testing sets. Permuting both the training and testing sets can give 
different insights on aspects of surgical performance and the associated 
classifications. When applied on the training set, the permutation 
feature importance underscores the performance metrics that are seen 
important during the learning phase of the models. It highlights the 
features that the model used in building the connections between 

surgical performance metrics and surgical classifications. Conversely, 
when applied on the testing set, the algorithm brings to light the pivotal 
features enabling the model to perform well on unseen data. It points out 
the features that the model relies on when formulating new predictions. 
This comparative approach of applying the algorithm on both the 
training and testing sets underscores the true importance of metrics in 
both the model’s learning and prediction phases. The detailed results of 
the drop in accuracies of each of the models when the training and 
testing sets are permuted can be see in the Appendix (Table A7–A10). 

4.2.1. Insights to the identified feature importance 
A number of insights can be drawn from the chosen analysis 

frameworks of feature importance applied on the models and defined by 
the CWA and the permutation feature importance algorithm. The 
following section starts with an overview of the commonality seen in the 
analyses and then delves into the intricacies of each model-algorithm 
combination. 

Table 12 to Table 14 reveal a common thread of features ranked as 
the most important across each model (stand-alone vs transfer learning 
models) and method (CWA vs permutation feature importance), indi-
cating robust findings. Force-related features such as FSAPBurToolmean, 
FM5Discectomymean, FM6ConcToolmean, FNPGainingAccessmean, are consistently iden-
tified as crucial metrics, emphasizing their crucial role in differentiating 
surgical proficiency levels. Similarly, the velocity features, define by 
vDiscectomymean and vBurToolmean, are also seen significant across different 
models and methods, highlighting their impact on surgical performance. 
This convergence of crucial features across diverse analytical frame-
works not only underscores the reliability of our results but also sheds 
light on the interrelation between force and velocity metrics, offering a 
more comprehensive view on aspects of surgical composites that dis-
tinguishes expertise. 

The permutation feature importance algorithm, applied to both 
training and testing sets, showed notable uniformity in feature rankings 
for both the Stand-Alone and Transfer Learning MLP ANN Models. This 
uniformity indicates a consistent representation of feature importance 
across different model configurations, demonstrating the robustness and 
critical role of the selected surgical performance features in accurate 
classification. Additionally, it further supports the overall reliability and 
validity of the models in classifying virtual OLLIF surgical performance. 
Furthermore, the consistent results reinforce the use of the permutation 
feature importance algorithm as a gold standard for comparing and 
validating the application of the CWA on multilayered neural networks. 

Analyzing the CWPs, both models show consistency in identifying 
important features for each surgical resident group. For junior-residents, 
top features like FM5Discectomymean, vDiscectomymean, and FSAPBurToolmean were 
consistently recognized in CWP rankings. Senior-residents’ key features 
included JYBurToolmean, FNPGainingAccessmean, and FSAPBurToolmean, while post- 
residents focused on vDiscectomymean and FNPGainingAccessmean. However, as 
outlined in Section 4.1, CWPs from the transfer learning model don’t 
indicate the directional impact (positive or negative) of features. More 
specifically, one cannot infer from a positive or negative CWP whether a 
class is likely to have higher or lower values for that respective feature, a 
conclusion made evident by the analysis of the misclassified individual 

Table 15 
Misclassified Participants’ Surgical Performance Scores: comparison using CWPs from Standalone and Transfer Learning Models, highlighting divergence from Junior 
Group and limitations in frozen-layers Transfer Learning Model.  

Misclassified Participant Model Category Metric Score Junior: CWP (%Importance) Senior/Post: CWP (%Importance) 

Junior as senior-resident Stand-Alone Safety FM5Discectomymean 0.93 − 1.01 (25.92 %) 0.332 (30.68 %) 
Safety FSAPBurToolmean 0.48 − 0.463 (11.86 %) 0.179 (16.5 %) 

Junior as post-resident Stand-Alone Motion vDiscectomymean − 1.10 0.672 (17.20 %) − 0.4631 (24.10 %) 
Motion vBurToolmean − 1.19 0.411 (10.53 %) − 0.288 (15.00 %) 

Junior as post-resident Transfer Learning Motion vDiscectomymean − 1.10 − 0.45 (18.7 %) 0.47 (17.20 %) 
Safety FNPGainingAccessmean − 0.85 − 0.49 (20.31 %) 0.44 (16.37 %) 
Safety FM5Discectomymean − 0.63 − 0.48 (19.97 %) 0.36 (13.16 %)  
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using the CWPs from the transfer learning model (Table 15). Despite 
this, the CWP magnitudes retain their importance, accurately reflecting 
feature relevance to each class. This relevance in magnitude, confirmed 
by the high consistency in key features identified by transfer learning 
CWPs, aligns with both the standalone model’s CWPs and the permu-
tation feature importance results. The consistency across the CWA re-
sults and the permutation feature importance affirms the reliability of 
insights acquired through the application of the CWA on both the stand- 
alone and transfer learning models. 

4.2.2. Surgical learning patterns through CWA 
The CWP of the stand-alone model was pivotal in illustrating the 

distinctive aspects of surgical performances across the three surgical 
classes, as outlined in the previous sections. Not only did it accurately 
highlight the importance of performance features, verified by the per-
mutation feature importance algorithm, but it was also able to justify the 
misclassifications, leveraging both the sign and magnitude of CWPs. 
Thus, the thorough insights from the CWPs may enhance the under-
standing of the complexities in surgical learning patterns and perfor-
mance across various surgical proficiency levels, allowing for more 
informed and tailored instructional learning systems. 

Fig. 12 illustrates two learning patterns in surgical training: contin-
uous and discontinuous, aligning with prior research [3,8,16,26]. 
Continuous learning shows sequential skill improvement from junior to 
senior to post-resident levels, while discontinuous learning involves 
non-linear skill progression, with inconsistent senior resident perfor-
mance [27]. The CWPs reveal that motion metrics and one safety metric, 
FNPGainingAccessmean, follow a continuous learning pattern, whereas other 
safety metrics display a discontinuous pattern. In motion metrics, the 
junior resident group utilizes higher velocities during discectomy and 
specifically while using the burr tool, as well as, using more sudden 
changes in direction while operating the multitool during access gaining 
and the burr tool during discectomy. Post-residents, in contrast, use 
lower velocities and more controlled movements. This suggests trainees 
should aim for slower, controlled movements to enhance OLLIF surgical 
performance. The applied force to the nucleus pulposus (NP) during 

access 
(

FNPGainingAccessmean

)
shows a continuous learning pattern, with 

post-residents exerting more force than senior and junior residents, 
indicative of more direct disc access. This suggests post-residents expe-
rience greater force at the end of the gaining access step, a crucial aspect 
since this phase lacks visual feedback, relying instead on tactile and 
somatosensory feedback for accurate navigation. Expert consultations 
confirm that the probe’s goal during this step is to puncture through 
muscles and annulus, typically ending in the nucleus, aligning with 
post-residents’ performances. This analysis emphasizes post-residents’ 
approach as the performance benchmark. Therefore, for enhanced sur-
gical performance, trainees may need to focus on developing somato-
sensory reflexes, using force feedback effectively during the gaining 
access step for precise disc navigation. 

Fig. 12 shows that the rest of the safety features display a discon-
tinuous learning pattern, with variations in force and torque applica-
tions among junior, senior, and post-residents during OLLIF surgery. 
Compared to senior-residents, junior and post-residents apply lower 
forces on the M5 muscle and the SAP, and use lower torques when using 
the burr tool during discectomy. Conversely, they exert more force, as 
compared to senior residents, on the M6 muscle using the Concorde tool. 
This pattern indicates an evolving surgical approach with experience 
gain. Post-residents, with more experience, use a refined approach, 
applying less force on the more superficial M5 muscle and SAP, and 
more force on the deeper M6 muscle [27]. This selective force use 
suggests an advanced understanding of anatomy and OLLIF procedural 
steps. Lower forces during early steps of the procedure on the M5 and 
SAP likely aim to preserve tissue integrity and to minimize tissue trauma 
while accessing deeper structures more precisely; on the other hand, the 
increased force using the Concorde tool on the M6 muscle in later 

surgery stages signifies a strategic approach to effectively navigate and 
manage tissue resistance while engaging deeper tissues effectively [27, 
28]. This systematic and methodical approach, reflective of their 
advanced training and experience, contrasts sharply with the less 
nuanced strategies of junior and senior residents, highlighting expertise 
differences. The discontinuous learning patterns, particularly between 
senior and post-residents, underscores the transformative refinement in 
surgical methodology that is typically honed over years of deliberate 
practice and experiential learning. 

Each surgical class in the OLLIF surgery demonstrates distinct 
characteristics. Junior-residents show fast, less precise movements with 
cautious force use, reflecting their reluctant and beginner level. Senior 
residents, in an intermediate skill phase, exhibit more controlled 
movements but with variable force application. Post-residents, show-
casing surgical expertise, perform deliberate, slow, and controlled 
movements with targeted force application, developed from extensive 
experience and deep anatomical knowledge. Thus, data mirroring these 
specific class traits would likely be classified accordingly, as was shown 
previously by our group [3,8,16,26]. This understanding explains the 
misclassifications in the stand-alone model, where one individual’s 
higher force application resembled senior residents and another’s lower 
velocities mirrored post-residents. 

4.2.3. Intelligent AI surgical tutors 
The trend towards developing AI-based intelligent tutor systems has 

emerged as an ideal complement to the proven ability of ML algorithms 
in accurately classifying performance as demonstrated in this study. Our 
group has highlighted the effectiveness of such systems in efficiently 
training residents by offering real-time performance feedback [10,29]. 
These systems are designed to replicate the guidance of expert surgeons 
by providing immediate, action-specific assessments and addressing the 
associated risks. Building these systems can follow two strategies, as 
shown by Mirchi et al. [10] and Yilmaz et al. [29]: one employs an 
offline pre-trained ML model for assessment and feedback, while the 
other uses an algorithm that learns continuously from new data while 
giving feedback to trainees. However, a potential issue is ’negative 
training,’ where residents might be trained to incorrect skill levels [30]. 
One method of overcoming this issue is validating the skills bench-
marked by the ML algorithm, for instance, by using realistic 
physics-based forces, similar to those in our newly developed simulator. 

5. Limitations 

5.1. Overcoming small data set limitation 

Addressing the limitations of a relatively small dataset collected from 
one university center was pivotal for the accuracy and generalizability of 
the models developed in this study. Unlike broader applications in fields 
such as bioinformatics and computational biology, where large datasets 
typically enable the effective training of deep learning models, our 
research had to innovate within the constraints of smaller data volumes 
[31–35]. This situation mirrors challenges in other specialized fields 
where data scarcity can hinder model performance and applicability. In 
response, this study addressed this limitation by using a combination of 
data augmentation, feature selection, and transfer learning techniques. 
Initially, the feature set was pruned, reducing it from 276 to 168 fea-
tures, by removing those with zero or near-zero variance and those 
having high correlation. Subsequently, a first pass through the SFS al-
gorithm fine-tuned the feature space once more from 168 to a focused 
set of highly relevant 16 features. Afterwards, data augmentation, spe-
cifically through data jittering, was integrated, designed to address both 
the small dataset limitation as well as the imbalanced classes. A subse-
quent round of SFS was then applied, refining the feature set to the final 
nine key metrics, each critical in distinguishing surgical performances. 

In this study, data jittering was chosen for its ability to introduce 
natural variability, reflecting variances like hand tremors and dexterity 
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control seen in actual surgical scenarios. It also preserved the realistic 
values of surgical performance features, avoiding distribution skew and 
aligning well with pre-normalized data. This approach was more suited 
to the realistic dynamics of surgical performance than other methods 
like data scaling, which could introduce unrealistic force values due to 
haptic limitations. Combining data augmentation with the removal of 
redundant features significantly improved the model’s predictive accu-
racy, raising the validation accuracy on the SFS algorithm from 82 % to 
92 %. This improvement underscored the efficacy of using data 
augmentation with feature selection to enhance model precision and 
reliability in applications where data is scarce. 

Transfer learning acts as a strategic leverage, harnessing previously 
acquired knowledge from related tasks, refining and extending the 
utility of machine learning models especially in cases of limited data 
scenarios. This methodology is commonly manifested in two predomi-
nant forms: fine-tuning of pre-trained models and utilizing pre-trained 
models as feature generators. Fine-tuning involves adapting the pre- 
trained model to new data, progressively optimizing all layers, start-
ing from the outermost layers to the deeper ones, based on the basis that 
the initial layers contain generic features applicable to related tasks. 
However, this approach often encounters overfitting issues especially 
when applied to shallow networks with constrained datasets. 
Conversely, the feature extractor method freezes the pre-existing layers 
of a trained model and appends new layers, acting as sophisticated fil-
ters, transforming input data into high-level features to enhance classi-
fications. Given the specificity of the current application and the 
constraints in dataset size, this study embraced the feature extractor 
methodology, which allowed robust generalization, effectively miti-
gating the risk of overfitting associated with the relatively small dataset 
and less complex network architecture. In fact, the transfer learning 
model resulted in a lower training accuracy than the stand-alone model, 
implying that the model did overfit on the training set. 

The incorporation of transfer learning improved the accuracy on the 
testing set, emphasizing its significant contribution in surgical simula-
tion classifications, especially in situations where the novelty of the 
surgery limits participant availability. This enhancement was evident as 
one of the participants, who was misclassified in the stand-alone model, 
achieved accurate classification with the transfer learning model. A 
plausible interpretation is that the model, via transfer learning, gener-
ated a subtle, novel feature offering a more complex analysis of per-
formances, although with reduced interpretability on the hidden 
insights. It’s possible that this improved method of analysis helped 
detect the subtle differences in performances, leading to more correct 
classifications even when the performances are quite similar. This bal-
ance between accuracy and detailed insight highlights how important 
transfer learning can be in improving the exactness and trustworthiness 
of prediction models, especially when dealing with limited and specific 
datasets, like the ones used in advanced surgical simulations. 

5.2. Connection Weights Algorithm limitations 

The study’s findings reveal that while CWPs effectively determined 
feature impact in both sign and magnitude for the standalone model, 
they only indicated the magnitude of relative importance without 
discerning the sign for the transfer learning model. This discrepancy 
becomes clear when analyzing misclassified instances, highlighting the 
difficulty in applying the CWA to multilayered ANNs with frozen layers 
transferred from other models. The limited adaptability of the transfer 
learning model, due to its reliance on these frozen layers for feature 
generation, hindered its ability to adjust to novel surgical features. To 

test this observation, a future research direction could involve un-
freezing and deeply fine-tuning all layers of the transfer learning model, 
enabling a more comprehensive comparison of its CWPs in both signs 
and magnitudes with those from the standalone model. 

5.3. Surgical performance metrics 

While the current simulator effectively captures and quantifies psy-
chomotor skills, it currently lacks the capability to assess qualitative 
metrics such as professionalism, communication, and teamwork. These 
“other skills” are integral to holistic surgical training but pose significant 
challenges for measurement within simulation environments, primarily 
due to their subjective nature and the complexity of their assessment. 
Future enhancements to the simulator could include the integration of 
technologies that assess these qualitative metrics. For example, incor-
porating video and audio analysis tools could enable the evaluation of 
communication skills and team dynamics during simulated procedures. 
This would provide a more comprehensive training tool that aligns 
better with the holistic training approaches advocated by leading sur-
gical education bodies. Such developments would require collaborative 
efforts between engineers, AI specialists, and clinical educators to ensure 
that the new metrics are not only measurable but also relevant and 
valuable for attaining surgical expertise beyond technical proficiency. 

6. Conclusion 

This study demonstrates the advantages of using MLP ANNs for 
classifying and analyzing surgical performance on a novel OLLIF surgi-
cal simulator. It highlighted the effectiveness of data augmentation and 
transfer learning in overcoming the challenges posed by small datasets 
typical of surgical simulators, and other domains with similar data 
constraints. Additionally, the study expanded on the authors’ previous 
work by comparing the new approach with the gold standard permu-
tation feature importance algorithm. Results indicate that this method is 
adaptable to deeper networks for determining feature importance, 
including assessing feature impact in both sign and magnitude. How-
ever, its effectiveness is limited to identifying feature importance when 
applied to transfer learning with frozen layers. This methodology pro-
vides a foundation for enhancing surgical training and may be adapted 
to improve real-time decision-making in live surgical environments. 
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Appendix  

Table A1 
Ranked Surgical Performance Metrics with Corresponding Weights and Relative Importance for Junior-Residents as defined by the Stand-Alone MLP ANN 
Model.  

Rank Category Metric Connection Weights Product Relative Importance (%) 

1 Safety FM5Discectomymean − 1.0126 25.92 % 
2 Motion vDiscectomymean 0.6722 17.20 % 
3 Safety FSAPBurToolmean − 0.4633 11.86 % 
4 Motion vBurToolmean 0.4113 10.53 % 
5 Motion JYBurToolmean 0.4087 10.46 % 
6 Motion signax Multitool 0.3507 8.97 % 
7 Safety TBurToolmean − 0.2992 7.66 % 
8 Safety FNPGainingAccessmean − 0.2598 6.65 % 
9 Safety FM6ConcToolmean 0.0281 0.71 %   

Table A2 
Ranked Surgical Performance Metrics with Corresponding Weights and Relative Importance for Senior-Residents as defined by the Stand-Alone MLP ANN 
Model.  

Rank Category Metric Connection Weights Product Relative Importance (%) 

1 Safety FM5Discectomymean 0.3327 30.68 % 
2 Safety FSAPBurToolmean 0.1790 16.50 % 
3 Motion JYBurToolmean 0.1370 12.63 % 
4 Safety FNPGainingAccessmean − 0.0915 8.43 % 
5 Safety FM6ConcToolmean − 0.0903 8.32 % 
6 Motion vBurToolmean − 0.0854 7.87 % 
7 Safety TBurToolmean 0.0830 7.65 % 
8 Motion signax Multitool 0.0655 6.04 % 
9 Motion vDiscectomymean 0.0200 1.85 %   

Table A3 
Ranked Surgical Performance Metrics with Corresponding Weights and Relative Importance for Post-Residents as defined by the Stand-Alone MLP ANN 
Model.  

Rank Category Metric Connection Weights Product Relative Importance (%) 

1 Motion vDiscectomymean − 0.4631 24.10 % 
2 Safety FNPGainingAccessmean 0.4581 23.84 % 
3 Motion vBurToolmean − 0.2880 15 % 
4 Motion JYBurToolmean − 0.2526 13.15 % 
5 Motion signax Multitool − 0.2322 12.08 % 
6 Safety FM6ConcToolmean 0.1586 8.25 % 
7 Safety TBurToolmean − 0.0275 1.43 % 
8 Safety FSAPBurToolmean 0.0239 1.24 % 
9 Safety FM5Discectomymean − 0.0171 0.89 %   

Table A4 
Ranked Surgical Performance Metrics with Corresponding Weights and Relative Importance for Junior-Residents as defined by the Transfer Learning MLP 
ANN Model.  

Rank Category Metric Connection Weights Product Relative Importance (%) 

1 Safety FNPGainingAccessmean − 0.4946 20.31 % 
2 Safety FM5Discectomymean − 0.4862 19.97 % 
3 Motion vDiscectomymean − 0.4553 18.7 % 
4 Safety FSAPBurToolmean − 0.3877 15.92 % 
5 Motion signax Multitool 0.2721 11.17 % 
6 Motion JYBurToolmean − 0.213 8.75 % 
7 Motion vBurToolmean − 0.1178 4.83 % 
8 Safety FM6ConcToolmean − 0.0059 0.24 % 
9 Safety TBurToolmean − 0.0023 0.095 %   
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Table A5 
Ranked Surgical Performance Metrics with Corresponding Weights and Relative Importance for Senior-Residents as defined by the Transfer Learning MLP 
ANN Model.  

Rank Category Metric Connection Weights Product Relative Importance (%) 

1 Motion signax Multitool − 0.5302 22.98 % 
2 Motion JYBurToolmean − 0.3611 15.65 % 
3 Safety FNPGainingAccessmean 0.3484 15.10 % 
4 Safety FSAPBurToolmean 0.3409 14.78 % 
5 Safety FM5Discectomymean 0.245 10.62 % 
6 Motion vDiscectomymean 0.1582 6.86 % 
7 Motion vBurToolmean − 0.1367 5.92 % 
8 Safety TBurToolmean − 0.0992 4.30 % 
9 Safety FM6ConcToolmean − 0.0866 3.75 %   

Table A6 
Ranked Surgical Performance Metrics with Corresponding Weights and Relative Importance for Post-Residents as defined by the Transfer Learning MLP 
ANN Model.  

Rank Category Metric Connection Weights Product Relative Importance (%) 

1 Motion JYBurToolmean 0.5348 19.58 % 
2 Motion vDiscectomymean 0.4699 17.20 % 
3 Safety FNPGainingAccessmean 0.4471 16.37 % 
4 Safety FM5Discectomymean 0.3594 13.16 % 
5 Motion signax Multitool 0.3458 12.67 % 
6 Motion vBurToolmean 0.3098 11.34 % 
7 Safety TBurToolmean 0.1189 4.35 % 
8 Safety FSAPBurToolmean 0.0769 2.81 % 
9 Safety FM6ConcToolmean − 0.0677 2.47 %   

Table A7 
Permutation Feature Importance applied on the training set with Stand-Alone MLP ANN Model.  

Rank Category Metric Prediction Accuracy(%) 

1 Safety FSAPBurToolmean 39.63 % 
2 Safety FM5Discectomymean 46.54 % 
3 Safety FM6ConcToolmean 57.06 % 
4 Safety FNPGainingAccessmean 61.83 % 
5 Safety TBurToolmean 71.26 % 
6 Motion vDiscectomymean 75.38 % 
7 Motion vBurToolmean 91.07 % 
8 Motion JYBurToolmean 95.44 % 
9 Motion signax Multitool 95.84 %   

Table A8 
Permutation Feature Importance applied on the testing set with Stand-Alone MLP ANN Model.  

Rank Category Metric Prediction Accuracy(%) 

1 Safety FM5Discectomymean 36.36 % 
2 Safety FNPGainingAccessmean 43.76 % 
3 Safety FM6ConcToolmean 48.44 % 
4 Safety FSAPBurToolmean 50 % 
5 Safety TBurToolmean 50.01 % 
6 Motion vDiscectomymean 57.86 % 
7 Motion vBurToolmean 60.94 % 
8 Motion JYBurToolmean 62.61 % 
9 Motion signax Multitool 73.45 %   
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Table A9 
Permutation Feature Importance applied on the training set with Transfer Learning MLP ANN Model.  

Rank Category Metric Prediction Accuracy(%) 

1 Safety FSAPBurToolmean 28.11 % 
2 Safety FM6ConcToolmean 45.15 % 
3 Safety FM5Discectomymean 49.57 % 
4 Safety FNPGainingAccessmean 50.15 % 
5 Safety TBurToolmean 50.54 % 
6 Motion vDiscectomymean 53.93 % 
7 Motion vBurToolmean 64.91 % 
8 Motion JYBurToolmean 71.67 % 
9 Motion signax Multitool 87.16 %   

Table A10 
Permutation Feature Importance applied on the testing set with with Transfer Learning MLP ANN Model.  

Rank Category Metric Prediction Accuracy(%) 

1 Safety FSAPBurToolmean 21.88 % 
2 Safety FM6ConcToolmean 25 % 
3 Safety FM5Discectomymean 32.9 % 
4 Safety FNPGainingAccessmean 53.18 % 
5 Safety JYBurToolmean 62.49 % 
6 Motion TBurToolmean 67.12 % 
7 Motion vBurToolmean 70.44 % 
8 Motion vDiscectomymean 71.85 % 
9 Motion signax Multitool 75 %  
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