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Abstract: 

IMPORTANCE: Our understanding of the composites of technical expertise during spinal 

procedures including the insertion of pedicle screws is incomplete. Datasets generated from 

surgical simulation allows the quantitation of psychomotor skills, which can be analyzed using 

machine learning algorithms which allows a more complete understanding of surgical 

performance. 

OBJECTIVE: The primary aim of this study was to identify important features distinguishing 

skilled and less skilled levels of expertise during simulated pedicle screw insertion. The secondary 

aim was to benchmark the classification accuracy of surgical performance through the 

implementation of machine learning algorithms. 

DESIGN: Participants from four universities were recruited between July 15, 2022, and May 31, 

2023, to participate in a case-series study. Data were collected over a single time point and no 

follow-up data were collected. Participants were classified a priori as either skilled or less skilled 

based on their experience in performing human pedicle screw insertion procedures.  

SETTING: McGill University Neurosurgical Simulation and Artificial Intelligence Learning 

Centre. 

PARTICIPANTS: Forty-three neurosurgery and orthopedic spine surgeons, spine fellows, and 

neurosurgery and orthopedic residents. 

INTERVENTION: Insertion of bilateral L5 and L4 pedicle screw insertions on a virtual reality 

platform resulting in 172 inserted screws for analysis. These 172 datapoints were divided into 

training set (70% - 121 data points) and testing set (30% -51 data points) for algorithm’s training 

and testing. We used 5-fold cross validation to validate the algorithm. 
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EXPOSURES: All participants performed a simulated virtual reality L5-L4 bilateral pedicle screw 

insertion during which they each inserted 4 screws.  

MAIN OUTCOMES AND MEASURES The main outcomes and measures were determined 

through an iterative process, wherein features related to instrument movement, force application, 

and tissue resection were chosen from the raw simulator data output. This selection was achieved 

through a combination of four feature selection methods, wrapper-based, embedded, filter-based, 

and weight-based, in conjunction with Support Vector Machine (SVM), Random Forest, K-

Nearest Neighbor (KNN), and Artificial Neural Network (ANN) models. The objective was to 

accurately assess the skill levels of participants in simulated pedicle screw insertion.  

RESULTS A cohort of 43 participants, including 5 women and 38 men with a mean age of 33.6 

years (SD 9.5), was evaluated. Machine learning models demonstrated varying accuracies on the 

test set: SVM achieved 78%, Random Forest 80%, KNN 82.3%, and ANN 82.3%. Analysis 

revealed 24 common features across Random Forest, KNN, and ANN, each achieving a 

classification accuracy of over 80%. 

CONCLUSIONS AND RELEVANCE By employing machine learning algorithms, our study 

identified key features that may determine components of expertise during simulated pedicle screw 

insertion. We introduced a combined approach for feature selection that could enhance the 

accuracy of classifying skilled versus less skilled performance in future experiments. This method 

may prove valuable in the assessment and training of various surgical procedures. 

RÉSUMÉ 

IMPORTANCE : Notre compréhension des composants de l'expertise technique lors des 

procédures spinales, y compris l'insertion de vis pédiculaires, est incomplète. Les ensembles de 
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données générés par la simulation chirurgicale permettent la quantification des compétences 

psychomotrices, qui peuvent être analysées à l'aide d'algorithmes d'apprentissage automatique, 

offrant ainsi une compréhension plus complète des performances chirurgicales.  

OBJECTIF : L'objectif principal de cette étude était d'identifier les caractéristiques importantes 

distinguant les niveaux de compétence élevés et faibles lors de l'insertion simulée de vis 

pédiculaires. L'objectif secondaire était de mesurer la précision de classification des performances 

chirurgicales grâce à l'implémentation d'algorithmes d'apprentissage automatique.  

CONCEPTION : Les participants de quatre universités ont été recrutés entre le 15 juillet 2022 et 

le 31 mai 2023 pour participer à une étude de série de cas. Les données ont été collectées à un seul 

moment et aucune donnée de suivi n'a été collectée. Les participants ont été classés a priori comme 

soit compétents, soit moins compétents, en fonction de leur expérience dans la réalisation de 

procédures d'insertion de vis pédiculaires humaines.  

LIEU : Centre de simulation neurochirurgicale et d'apprentissage de l'intelligence artificielle de 

l'Université McGill.  

PARTICIPANTS : Quarante-trois chirurgiens en neurochirurgie et en orthopédie rachidienne, 

boursiers en chirurgie rachidienne et résidents en neurochirurgie et en orthopédie. 

INTERVENTION : Les participants ont effectué des insertions de vis pédiculaires bilatérales L5 

et L4 sur une plateforme de réalité virtuelle, résultant en 172 (points de données) vis insérées pour 

analyse. Ces 172 points de données ont été divisés en un ensemble d'entraînement (70% - 121 

points de données) et un ensemble de test (30% - 51 points de données) pour l'entraînement et le 
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test de l'algorithme. De plus, une validation croisée à 5 plis a été employée pour valider 

l'algorithme. 

EXPOSITIONS : Tous les participants ont réalisé une insertion simulée de vis pédiculaires 

bilatérales L5-L4 en réalité virtuelle, au cours de laquelle chacun a inséré 4 vis. PRINCIPAUX 

RÉSULTATS ET MESURES : Les principaux résultats et mesures ont été déterminés par un 

processus itératif, dans lequel des caractéristiques liées au mouvement des instruments, à 

l'application de force et à la résection des tissus ont été choisies à partir des données brutes du 

simulateur. Cette sélection a été réalisée grâce à une combinaison de quatre méthodes de sélection 

de caractéristiques : basées sur des enveloppes, intégrées, basées sur des filtres et basées sur des 

poids, en conjonction avec les modèles Support Vector Machine (SVM), Random Forest, K-

Nearest Neighbor (KNN) et Artificial Neural Network (ANN). L'objectif était d'évaluer avec 

précision les niveaux de compétence des participants lors de l'insertion simulée de vis pédiculaires. 

RÉSULTATS : Un cohort de 43 participants, dont 5 femmes et 38 hommes avec un âge moyen 

de 33,6 ans (SD 9,5), a été évalué. Les modèles d'apprentissage automatique ont démontré des 

précisions variables sur l'ensemble de test : SVM a atteint 78 %, Random Forest 80 %, KNN 82,3 

% et ANN 82,3 %. L'analyse a révélé 24 caractéristiques communes à Random Forest, KNN et 

ANN, chacune atteignant une précision de classification de plus de 80 %. CONCLUSIONS ET 

CONCLUSIONS ET PERTINENCE En utilisant des algorithmes d'apprentissage automatique, 

notre étude a identifié des caractéristiques clés qui pourraient déterminer les composantes de 

l'expertise lors de l'insertion simulée de vis pédiculaires. Nous avons introduit une approche 

combinée de la sélection des caractéristiques qui pourrait améliorer la précision de la classification 

des performances qualifiées par rapport aux performances moins qualifiées dans de futures 
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expériences. Cette méthode pourrait s'avérer précieuse dans l'évaluation et la formation pour 

diverses procédures chirurgicales. 

सार 

महत्व: रीढ़ की प्रक्रियाओ ंके दौरान तकनीकी क्रिशेषज्ञता के घटक  ंकी हमारी समझ, क्रिसमें पेक्रिकल सू्क्र 

का सम्मिलन शाक्रमल है, अधूरी है। शल्य क्रिक्रकत्सा क्रसमुलेशन से उत्पन्न िेटासेट साइक म टर कौशल  ंकी 

मात्रात्मकता की अनुमक्रत देते हैं, क्रिन्हें मशीन लक्रनिंग एल्ग ररदम का उपय ग करके क्रिशे्लक्रषत क्रकया िा 

सकता है, ि  शल्य क्रिक्रकत्सा प्रदशशन की एक अक्रधक पूर्श समझ की अनुमक्रत देता है। 

उदे्दश्य: इस अध्ययन का मुख्य उदे्दश्य पेक्रिकल सू्क्र सम्मिलन के दौरान कुशल और कम कुशल स्तर  ंकी 

क्रिशेषज्ञता क  अलग करने िाले महत्वपूर्श क्रिशेषताओ ंकी पहिान करना था। क्रितीयक उदे्दश्य शल्य 

क्रिक्रकत्सा प्रदशशन की िगीकरर् सटीकता क  मापने के क्रलए मशीन लक्रनिंग एल्ग ररदम के कायाशन्वयन के 

माध्यम से मापन करना था। 

डिजाइन: िार क्रिश्वक्रिद्यालय  ंसे प्रक्रतभाक्रगय  ंक  15 िुलाई 2022 और 31 मई 2023 के बीि एक केस-

सीरीि अध्ययन में भाग लेने के क्रलए भती क्रकया गया था। िेटा क  एक ही समय क्रबंदु पर एकत्र क्रकया गया 

था और क ई अनुिती िेटा एकत्र नही ंक्रकया गया था। प्रक्रतभाक्रगय  ंक  उनके मानि पेक्रिकल सू्क्र सम्मिलन 

प्रक्रियाओ ंक  करने के अनुभि के आधार पर पहले से ही कुशल या कम कुशल के रूप में िगीकृत क्रकया 

गया था। 

सेड िंग: मैकक्रगल क्रिश्वक्रिद्यालय नू्यर सक्रिशकल क्रसमुलेशन और आक्रटशक्रिक्रशयल इंटेक्रलिेंस लक्रनिंग सेंटर। 

प्रडिभागी: तैंतालीस नू्यर सिशरी और ऑथोपेक्रिक स्पाइन सिशन, स्पाइन िेल  और नू्यर सिशरी और 

ऑथोपेक्रिक क्रनिासी। 
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हस्तके्षप: प्रक्रतभाक्रगय  ंने ििुशअल ररयक्रलटी पे्लटिॉमश पर क्रिपक्षीय L5 और L4 पेक्रिकल सू्क्र इंसशशन क्रकए, 

क्रिसके पररर्ामस्वरूप क्रिशे्लषर् के क्रलए 172 (िेटा पॉइंट्स) सू्क्र िाले गए। इन 172 िेटा पॉइंट्स क  

एल्ग ररदम प्रक्रशक्षर् और परीक्षर् के क्रलए प्रक्रशक्षर् सेट (70% - 121 िेटा पॉइंट्स) और परीक्षर् सेट (30% 

- 51 िेटा पॉइंट्स) में क्रिभाक्रित क्रकया गया। इसके अक्रतररक्त, एल्ग ररदम क  मान्य करने के क्रलए 5-गुना 

िॉस-िैक्रलिेशन का उपय ग क्रकया गया। 

एक्सपोजर: सभी प्रक्रतभाक्रगय  ंने एक क्रसमु्यलेटेि ििुशअल ररयक्रलटी L5-L4 क्रिपक्षीय पेक्रिकल सू्क्र सम्मिलन 

क्रकया, क्रिसके दौरान उन्ह नें प्रते्यक ने 4 सू्क्र सम्मिक्रलत क्रकए। 

मुख्य पररणाम और उपाय: मुख्य पररर्ाम और उपाय एक पुनरािृत्त प्रक्रिया के माध्यम से क्रनधाशररत क्रकए 

गए थे, क्रिसमें कचे्च क्रसमु्यलेटर िेटा आउटपुट से उपकरर् आंद लन, बल आिेदन, और ऊतक पुनः प्राम्मि 

से संबंक्रधत क्रिशेषताओ ंक  िुना गया था। यह ियन िार क्रिशेषता ियन क्रिक्रधय ,ं रैपर-आधाररत, एंबेिेि, 

क्रिल्टर-आधाररत, और िेट-आधाररत, के संय िन के माध्यम से प्राि क्रकया गया था, ि  समथशन िेक्टर 

मशीन (SVM), रैंिम िॉरेस्ट, K-क्रनकटतम पड सी (KNN), और कृक्रत्रम तंक्रत्रका नेटिकश  (ANN) मॉिल  ं

के साथ क्रकया गया था। उदे्दश्य प्रक्रतभाक्रगय  ंके कौशल स्तर  ंक  क्रसमु्यलेटेि पेक्रिकल सू्क्र सम्मिलन में 

सटीक रूप से आकलन करना था। 

पररणाम: एक 43 प्रक्रतभाक्रगय  ंका समूह, क्रिसमें 5 मक्रहलाएं और 38 पुरुष थे, क्रिनकी औसत आयु 33.6 

िषश (SD 9.5) थी, का मूल्यांकन क्रकया गया। मशीन लक्रनिंग मॉिल ने टेस्ट सेट पर क्रिक्रभन्न सटीकताएं 

प्रदक्रशशत की:ं SVM ने 78%, रैंिम िॉरेस्ट ने 80%, KNN ने 82.3%, और ANN ने 82.3% हाक्रसल क्रकया। 

क्रिशे्लषर् ने रैंिम िॉरेस्ट, KNN, और ANN में 24 सामान्य क्रिशेषताओ ंका खुलासा क्रकया, प्रते्यक ने 80% 

से अक्रधक िगीकरर् सटीकता हाक्रसल की। 
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डनष्कर्ष और प्रासिंडगकिा मशीन लक्रनिंग एल्ग ररदम का उपय ग करके, हमारे अध्ययन ने महत्वपूर्श 

क्रिशेषताओ ंकी पहिान की ि  क्रसमु्यलेटेि पेक्रडकल सू्क्र इनसशशन के दौरान क्रिशेषज्ञता के घटक  ंक  

क्रनधाशररत कर सकती हैं। हमने िीिर ियन के क्रलए एक संयुक्त दृक्रिक र् प्रसु्तत क्रकया है ि  भक्रिष्य के प्रय ग  ं

में कुशल और कम कुशल प्रदशशन क  िगीकृत करने की सटीकता क  बढ़ा सकता है। यह क्रिक्रध क्रिक्रभन्न शल्य 

क्रिक्रकत्सा प्रक्रियाओ ंके मूल्यांकन और प्रक्रशक्षर् में उपय गी साक्रबत ह  सकती है। 
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CHAPTER 1 

Preface And Contribution of Authors: 

This thesis, an exemplar of original research, is presented in a manuscript format intended for 

academic publication. The manuscript, detailing my research, will be submitted to JAMA Surgery 

for peer review. 

As the primary investigator, my involvement in this research was comprehensive and multi-

faceted, encompassing the initial conceptualization of the trial, meticulous design of the trial 

protocol, rigorous participant recruitment processes, execution of the trial, advanced data curation 

practices, the innovative design of performance matrix extraction architecture, and the 

development and implementation of machine learning algorithms for the improved classification 

of expertise levels among surgical trainees. Moreover, I have undertaken the task of coding these 

algorithms, conducting an analysis of the outcomes, and our findings, thereby ensuring the 

integrity and reliability of the data collected. This work stands as a testament to my commitment 

to advancing the field of surgical education and artificial intelligence. 

Trisha Tee’s, expertise greatly enhanced the conceptual foundation of the trial. Her role was 

instrumental in designing the trial protocols, implementing the methodology, recruiting 

participants, and the hands-on management of the trial, reflecting a dedication that has significantly 

shaped the study's success. 

Dr. Bilal Tarabay, whose insights into the realm of spine surgery provided a critical lens through 

which the trial was conceptualized. From the establishment of trial protocols to the identification 

of pivotal performance matrices that distinguish skilled from less skilled performances, Dr. 

Tarabay contributions have been indispensable. His provision of surgical expertise and resources 

has been a cornerstone in the development of this project. 
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Dr. Recai Yilmaz, whose expertise in the domains of data curation techniques and algorithmic 

benchmarking has profoundly influenced the methodological rigour of this study. Dr. Yilmaz's 

involvement ensured that our approaches to data analysis remained both innovative and grounded 

in empirical evidence. 

The expertise in spine surgery and surgical knowledge of Dr Abdulmajeed Albeloushi, and Dr. 

Mohamed Albantobi, has provided constant support in understanding nuances of performance 

matrices to understand and validate the machine learning algorithm’s prediction with real life 

scenario. 

Dr. Rolando Del Maestro, whose guidance and mentorship have been the guiding light of this 

research journey. Contributing to every facet of the project—from conceptualization and 

methodology to validation, administration, and funding acquisition—Dr. Del Maestro's 

supervision has been both a privilege and a profound learning experience. His expertise in 

neurosurgery and unwavering support have been instrumental in the project's development, 

execution, and interpretation of results. 

This collaborative effort embodies a shared vision for the advancement of surgical training through 

the integration of artificial intelligence, marking a significant contribution to the field. Our 

collective endeavor reflects not only a commitment to scientific inquiry but also a dedication to 

improving surgical outcomes and education. 

Abbreviations & Acronyms: 

VR: Virtual Reality  

AI: Artificial Intelligence 

OSATS: Objective Structured Assessment of Technical Skills 

PGY: Post Graduate Year 
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ANN: Artificial Neural Network 

SVM: Support Vector Machine 

KNN: K-Nearest Neighbours 

REF: Recursive Feature Elimination  

RFC: Random Forest Classifier  

SHAP: Shapley Additive Explanation 

ICEMS: Intelligent Continuous Expertise Monitoring System 

Thesis Introduction: 

Traditionally, surgical training has adhered to an apprenticeship model rather than a competency-

based framework, posing challenges in objectively evaluating a trainee's competency (Van Heest 

et al., 2022). This method relies primarily on subjective assessments, lacking an objective 

quantitative methodology necessary for accurately gauging a trainee's performance, particularly in 

complex spine surgeries like pedicle screw insertions, known for their steep learning curves 

(Franzese & Stringer, 2007). The need to assess and quantify the complex aspects of surgical skill 

development is thus increasingly recognized, especially with the rapid evolution of technology 

offering insights into the composites of surgical tasks (Rogers et al., 2021). 

Equally, the emphasis on patient safety during surgical training cannot be overstated. Historically, 

surgical trainees have learned procedures directly on patients, carrying significant risks (Coelho et 

al., 2014; Tang et al., 2005). Instances of patient harm due to trainee errors underscore the urgency 

for safer training modalities. Advances in simulation technology are revolutionizing the concept 

of surgical training, with medical schools increasingly integrating such technologies into their 

curricula to mitigate risks (Steadman et al., 2016). 
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The field of medical training is undergoing significant transformation with the integration of 

artificial intelligence (AI), particularly in surgical education (Guerrero et al., 2022). Exploratory 

methods spanning in vivo, ex-vivo, cadaveric studies, as well as augmented reality and virtual 

reality (VR), are being investigated (Patel et al., 2021; Yilmaz et al., 2022). AI's ability in 

processing vast datasets and identifying key learning parameters from simulator-generated data is 

paving the way for enhanced training methodologies (Yilmaz et al., 2022). 

Previous initiatives at the Neurosurgical Simulation and Artificial Intelligence Learning Centre 

have laid the groundwork by developing and validating surgical simulators, alongside systems for 

analyzing extensive simulator data to provide real-time feedback on neurosurgical tasks (Yilmaz 

et al., 2022). This study aims to extend this innovative approach by validating the TSYM simulator, 

developed by the Montreal-based startup Symgery, designed for spine procedures (Symgery, 

2023). Through AI, we intend to discern critical performance attributes in pedicle screw insertion 

by using simulated operations that distinguish skilled and less skilled participants performance. 
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CHAPTER 2 

Background 

History of thoracolumbar spinal instrumentation 

Spinal procedures are critical interventions for managing a variety of debilitating conditions, 

particularly low back pain, which has become a significant public health issue in the Western 

world. It is estimated that over 80% of individuals will experience low back pain at some point 

during their lives, making it not only a leading cause of activity limitation but also the third most 

frequent indication for surgical intervention in the United States (Abumi et al., 1989; Dickman et 

al., 1992). This condition has led to a noticeable increase in the number of spinal operations 

performed in recent decades, reflecting its substantial clinical and economic impact. 

The revolution in spinal surgery began with the introduction of internal fixation by Paul Harrington 

in 1975. Originally designed for deformity correction, the Harrington rod system was subsequently 

adapted for broader applications across various spinal conditions, significantly enhancing the 

surgical management of spinal disorders (Andén et al., 1980; Livingston & Perrin, 1978; 

Sundaresan et al., 1984; Wang et al., 1979). This innovation marked a seminal shift in the approach 

to spinal surgery, offering new therapeutic possibilities for patients. 

Further advancements were made around 1975, when Eduardo Luque enhanced the Harrington 

system by integrating sublaminar wires, which improved spinal stabilization and expanded the 

system's clinical utility (Luque, 1982). The evolution of spinal fixation technologies continued into 

the 1980s with the introduction of the Cotrel Dubousset (CD) system. This system incorporated 

sophisticated hook-rod mechanisms specifically designed to manage complex spinal deformities, 

thereby broadening the surgical options available to clinicians (Cotrel & Dubousset, 1984). 
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During the same period, Roy-Camille made significant contributions to spinal instrumentation by 

pioneering the use of the pedicle for segmental fixation. His development of pedicle screws offered 

superior biomechanical stability and versatility, allowing for their application in diverse spinal 

segments and conditions (Abumi et al., 1989; Dickman et al., 1992; Roy-Camille et al., 1970). 

This innovation was further refined by Magerl in 1977, who introduced the “fixateur externe”, an 

external fixation system utilizing pedicle screws. This concept was subsequently modified by 

Walter Dick, who developed the “fixateur interne”, integrating the rods inside the body to enhance 

internal fixation strategies (Dick et al., 1985). 

The adoption and popularization of pedicle screws in the United States were notably advanced by 

Arthur Steffee in 1984. His developments led to the preference for rod-based systems due to their 

flexibility and potential to facilitate spinal fusion, significantly advancing the capability for 

performing complex spine surgeries (Esses & Bednar, 1989). 

These sequential innovations have fundamentally transformed the landscape of spinal surgery, 

offering enhanced surgical approaches and improved patient outcomes. Each development has 

built upon the previous, cumulatively enriching the surgical techniques that have become essential 

in the modern management of spine-related ailments. 

Risk associated with pedicle screw insertion procedure 

The intricate nature of spinal procedures is primarily due to the spine's proximity to critical 

neurological structures, significantly increasing the risk of complications. Surgical errors during 

these procedures can lead to a wide array of adverse outcomes, including neural damage, 

pulmonary embolism, neurological impairments, and surgical site infections. Furthermore, some 

patients may experience chronic back pain postoperatively, necessitating additional interventions 

in more severe cases (Dickman et al., 1992). 
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A fundamental technique in spinal surgery is the insertion of pedicle screws, which is essential for 

stabilizing and achieving fusion in the thoracolumbar spine. This technique is particularly crucial 

in treating conditions associated with axial instability, such as degenerative, neoplastic, and 

infectious diseases (Bono & Lee, 2004; Dick et al., 1985; Esses & Bednar, 1989). Despite 

technological advancements in surgical methods, the placement of pedicle screws involves 

significant risks of complications, underscoring the importance of surgeons and trainees mastering 

this procedure to minimize the likelihood of acute neurological deficits and the subsequent need 

for revision surgeries (Kim et al., 2004). 

Research indicates that the rate of pedicle screw misplacement is notably variable, reported 

between 15.7% and 41% (Baird et al., 2017; Gelalis et al., 2012; Gonzalvo et al., 2009; Hicks et 

al., 2010). This variability emphasizes the critical need for enhanced training protocols and 

sustained proficiency among surgical staff.  

The precision of pedicle screw placement is a focal point in spinal surgery, essential for avoiding 

complications and optimizing patient outcomes. Improper placement of screws can jeopardize the 

structural integrity of the vertebrae, posing significant risks to neural, vascular, and visceral 

structures, and potentially leading to severe clinical complications (de Kater et al., 2022; Gautschi 

et al., 2011; Kim et al., 2004; Sarwahi et al., 2016). While minor cortical breaches are often 

asymptomatic, they can lead to hardware failure, instability, diminished fusion rates, and 

accelerated adjacent level degeneration (Amaral et al., 2021; Aoude et al., 2015; Aoude et al., 

2018; de Kater et al., 2022; Sarwahi et al., 2016; Gautschi et al., 2011). 

Reviews of the literature reveal that the incidence of pedicle screw misplacement ranges from 

4.2% to 8.7 %, influenced by patient demographics and specific surgical details (Gautschi et al., 

2011; Hicks et al., 2010). A detailed study by Hicks et al. found that among these mispositioned 
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screw, the most frequent breaches occurred in the lateral cortex (53%), followed by medial (24%), 

inferior (14%), superior (8%), and anterior (1%) breaches (Hicks et al., 2010). 

Despite the relatively low frequency of critical complications in non-deformity cases—less than 

0.5%—the consequences of misplacement can be dire, including nerve damage, cerebrospinal 

fluid leaks, instability, pseudarthrosis, and the need for revision surgeries, not to mention the 

potential for malpractice litigation (Adamski et al., 2023; Aoude et al., 2015; Gautschi et al., 2011; 

Sankey et al., 2020). Additionally, the literature notes rare but serious complications such as 

intraoperative pedicle fractures, screw loosening or pullout, and pulmonary effusion, highlighting 

the necessity for meticulous surgical techniques and vigilant postoperative monitoring (Gautschi 

et al., 2011). 

Current Surgical Education, Challenges 

Surgical education has historically been structured around an apprenticeship model, where trainees 

observe and learn from experienced surgeons before gradually performing procedures under 

supervision and eventually independently (Polavarapu et al., 2013; Grillo, 2018). This traditional 

approach allows knowledge to be passed down through generations of surgeons. However, it relies 

heavily on subjective assessments of skill by mentors, which may not capture the full complexity 

of surgical proficiency. For example, direct observation does not provide quantitative data on 

essential technical skills such as the amount of force applied to tissues during a procedure, which 

can be precisely measured using specialized equipment (Asad et al., 2014; McCall, 2016). 

Despite its evolution, with more informed surgical educators utilizing advanced protocols, the 

apprenticeship model still faces significant limitations, particularly in the realm of objective 

performance assessment. The reliance on cadaveric training illustrates another challenge. While 

cadaveric dissections play a crucial role in surgical education, they do not fully replicate the 
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dynamic nature of living tissues, nor do they present the same complications such as bleeding or 

post-operative issues (Asad et al., 2014; McCall, 2016). Additionally, there is a notable 

discrepancy between the demand for and supply of cadavers, with over 23,000 needed annually in 

the United States alone.  Supplies frequently fall short, particularly impacting medical schools with 

less access to resources (Asad et al., 2014; McCall, 2016). 

Moreover, the risk to patients during surgical training remains a significant concern. Trainees often 

do not receive sufficient hands-on experience before transitioning to live patient operations, raising 

the potential for errors that could result in patient harm (Polavarapu et al., 2013). This gap 

underscores the necessity for improved training methods that can safely bridge the transition from 

theoretical learning to practical application. 

The response to these educational challenges has been a gradual shift from informal 

apprenticeships to structured competency-based training models. This transition was notably 

influenced by the seminal contributions of Sir William Osler, who advocated for early clinical 

exposure at McGill University and Johns Hopkins Medical School, as well as those of William S. 

Halsted, who introduced a progressive surgical training model emphasizing supervised training 

and gradual autonomy at Johns Hopkins Hospital (Grillo, 2018; Mueller, 2010; Waugh & Bailey, 

2013). These developments laid the groundwork for more formalized and systematic surgical 

training programs. 

The Flexner Report in the early 20th century further catalyzed the standardization of medical 

education by exposing deficiencies across U.S. and Canadian medical schools, leading to the 

establishment of the American College of Surgeons in 1912 with the aim of enhancing training 

standards (Polavarapu et al., 2013; Waugh & Bailey, 2013). This period also saw the introduction 

of nationwide examinations for medical graduates, fostering uniformity in medical education and 
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ensuring a baseline competency among physicians (Cooke et al., 2006; Grillo, 2018; Mueller, 

2010). 

In recent decades, the growing complexity of surgical procedures and the imperative for patient 

safety have driven the adoption of Competency-Based Medical Education (CBME). This 

educational paradigm focuses on ensuring that surgical trainees develop specific competencies, 

assessed through structured frameworks such as the CanMEDS roles, which were first introduced 

by the Royal College of Physicians and Surgeons of Canada in 1996 and updated in 2015 (Frank 

et al., 2015; Iobst et al., 2010; Harris et al., 2020). Furthermore, the Competence by Design (CBD) 

program by the Royal College aims to overhaul postgraduate medical education by delineating 

clear competencies for each stage of training and employing Entrustable Professional Activities 

(EPAs) to monitor progress (Frank et al., 2015; Frank et al., 2017; Harris et al., 2020; Stockley et 

al., 2020). 

The shift towards CBME represents a significant paradigm shift in surgical education, emphasizing 

outcome-focused learning and skill mastery over time-based progression. This approach is 

designed to ensure that all trainees are adequately prepared for independent practice, enhancing 

patient safety and the overall quality of care. The American Board of Surgery's integration of EPAs 

reflects a broader commitment to advancing competency-based surgical training across various 

specialties, aiming to standardize the assessment and certification of surgical competencies 

globally (Patel et al., 2020; Sonnadara et al., 2014; Frank et al., 2017; Frank et al., 2017; Stockley 

et al., 2020). 

Surgical Educations and Simulators 

Surgical education has experienced a significant evolution with the advent of simulation-based 

training, an approach that has transformed traditional methodologies. Originating from the aviation 
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industry's model, simulation training in surgery emphasizes the acquisition of skills through 

repetitive practice and reflection. Resnick and MacRae have categorized the development of 

surgical skills into cognitive, integrative, and autonomous phases, a framework that closely aligns 

with pilot training programs focused on skill development through pattern recognition (Reznick & 

MacRae, 2006). 

Initially adopted in the 1960s, medical simulators have progressively embraced advanced 

computerized VR platforms since the late 1990s (Badash et al., 2016). These technologies enable 

surgical trainees to engage in immersive experiences that closely replicate real-world scenarios, 

thereby enhancing their procedural skills in a risk-free environment. Simulation laboratories 

provide a controlled setting where trainees can practice various surgical techniques, from basic 

suture tying to complex robotic surgeries, without the immediate pressures of the operating room 

(Ray et al., 2013). 

One of the key benefits of simulation is the ability to objectively assess and improve surgical skills 

using standardized tools such as the Objective Structured Assessment of Technical Skills (OSATS) 

(Martin et al., 1997; Hatala et al., 2015). This allows for structured feedback and quantifiable 

benchmarks of trainee performance, facilitating a smoother transition to operating on real patients 

with increased confidence and proficiency (Yilmaz et al., 2022). 

VR technology has particularly revolutionized training for minimally invasive procedures like 

laparoscopic and endoscopic surgeries, offering high-fidelity simulations that include realistic 

haptic feedback mechanisms (Alaraj et al., 2015; Chan et al., 2013). The Minimally Invasive 

Surgery Trainer – Virtual Reality (MIST-VR) is an example of how VR can significantly enhance 

surgical performance and reduce procedural errors (Gallagher et al., 2004; Wilson et al., 1997). 
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However, the application of VR in spine surgical training has not progressed as rapidly as in other 

surgical specialties such as laparoscopic or robotic surgery. Most commercially available spine 

simulators focus on less complex procedures like vertebroplasty and pedicle screw placement, with 

limited access to simulators that cover more advanced interventions such as anterior cervical 

discectomy and fusion or scoliosis surgery (Pfandler et al., 2017). This gap is attributed to various 

challenges, including the difficulty of replicating the detailed anatomical structures and the 

different force dynamics required between soft tissues and bone, as well as the high costs 

associated with developing these comprehensive simulation platforms (Pfandler et al., 2017). 

Moreover, spine surgery simulations demand a high degree of anatomical accuracy and realistic 

tactile feedback, essential for tasks that require precise manipulation such as bone drilling (Ray et 

al., 2013; Vaughan et al., 2016). Although technological barriers such as the limitations of haptic 

devices and the slow response rates of simulated tools exist, ongoing advancements are improving 

the fidelity and responsiveness of VR platforms.  

The NeuroVR simulator platform consists of a stereoscope through which a three-dimensional 

image is projected for the participant to interact with Figure 2.1. The user manipulates the 

simulation object through a bimanual haptic system using both hands together, mimicking the 

bimanual tasks faced in a live operating environment. The finite element method numerically 

models the structures in the scenario and applies a physics-based approach permitting mechanical 

characterization of the simulated structures. Although more computationally demanding the finite 

element method for a series of brain tumor and spine related procedures (Delorme et al.,2012). 
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Figure 2.1 The NeuroVR simulation platform. A. Participant performing a laminectomy on the 

NeuroVR Platform. B: Simulated laminectomy procedure. C. Bimanual force feedback handles. 

 

As VR technology continues to evolve, it is anticipated that more sophisticated simulators capable 

of facilitating more complex spine procedures will become available. This advancement holds the 

potential to mitigate risks associated with surgical errors and enhance the training outcomes, 

ultimately ensuring better patient safety and more competent surgical practitioners. 

Review of existing simulators for spine surgery 

In the evolving landscape of spinal surgery education, VR simulators have emerged as pivotal 

tools, offering an immersive, interactive, and detailed platform for surgeons to hone their skills 

safely. These simulators blend advanced technology with practical surgical training, providing a 

dynamic environment that mimics real-life scenarios. 
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Immersive Touch has advanced visualization and haptic feedback capabilities. It utilizes head and 

hand tracking via robotic arms to dynamically adjust the user's perspective, simulating a wide 

range of spinal surgery scenarios, including pedicle screw placement, vertebroplasty, and lumbar 

puncture (Alaraj et al., 2013; Luciano et al., 2005; Luciano et al., 2011; Luciano et al., 2013). This 

system's strengths lie in its immersive experience, integration of patient-specific imaging, and 

versatility across multiple procedures. Despite these advantages, the system does not provide audio 

feedback, which could otherwise enhance the immersive experience. Moreover, there is a notable 

gap in validation studies specifically focused on the accuracy and effectiveness of the simulated 

procedures, limiting its empirical endorsement (Alaraj et al., 2013; Gasco et al., 2014; Luciano et 

al., 2005; Luciano et al., 2011; Luciano et al., 2013; Roitberg et al., 2013). 

The Virtual Surgical Training System (VSTS) offers targeted training with its screen-based VR 

environment and a robotic arm for tactile feedback, focusing on cervical spine drilling and thoracic 

pedicle screw placement (Shi et al., 2018). The simulator's realistic anatomical models derived 

from actual human spines provide an accurate base for training. However, its use of a 2D screen 

to display 3D scenarios may impair depth perception and immersion. Furthermore, while initial 

validation efforts have been made, the system lacks comprehensive validation across critical 

metrics like face, content, and construct validity, which are essential for confirming the simulator’s 

educational efficacy (Hou et al., 2018; Shi et al., 2018). 

The Immersive Virtual Reality Surgical Simulator for Pedicle Screws Placement (IVRSS-PSP) is 

tailored specifically for pedicle screw placement. It features a heads-up display and a robotic arm 

that collectively enhance the realism of the operative environment. This simulator promises a 

highly immersive training experience with its realistic spine models and 3D-printed tools that 

mimic actual surgical instruments. Despite these features, the simulator’s focus remains narrowly 



28 
 

confined to pedicle screw placement, and it lacks extensive validation studies that would 

substantiate its effectiveness and reliability in broader surgical training context (Xin et al., 2019; 

(Xin et al., 2020). 

Sim-Ortho® provides a comprehensive VR training environment with voxel-based simulation 

technology, stereoscopic 3D glasses, and haptic plus auditory feedback (Figure 2.2). It supports a 

wide array of spinal procedures, making it a versatile tool for training in complex surgeries. While 

some procedures like anterior cervical discectomy and fusion (ACDF) have undergone validation, 

others within its range have not, raising questions about the overall reliability and effectiveness of 

the simulator across its full range of applications (Bakhaidar et al., 2023; Ledwos et al., 2021; 

Reich et al., 2022). 

Figure 2.2 The Sim-Ortho® virtual reality simulator platform. A. Sim-Ortho® virtual reality 
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simulator. B. Participant performing a simulated anterior cervical discectomy and fusion procedure 

on the Sim-Ortho® platform. C. Immersive 3D view of the simulated VR discectomy component. 

 

A Custom VR Simulator provides a personalized training approach with its HUD headset and 

interactive controllers, focusing primarily on pedicle screw placement and drilling. The use of 

patient-specific models enhances the realism of the training scenarios. However, this simulator 

suffers from a lack of comprehensive validation and a narrow focus, which may limit its utility in 

broader surgical education (Chen et al., 2021). 

TSYM Spine Simulator 

The TSYM Symgery Virtual Reality Surgical Simulator, developed by Cedarome Canada Inc. 

known as Symgery, in Montreal, Canada, represents an advanced improvement in the domain of 

spinal surgery training. This state-of-the-art VR simulator leverages a voxel-based system to 

construct a detailed three-dimensional (3D) representation of the intraoperative surgical 

environment, facilitating a highly realistic and non-immersive training experience (Figure 2.3) 
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Figure 2.3: The virtual reality platform used to simulate the L5-L4 bilateral pedicle screw 

insertion. A. The TSYM simulator set up, showing the (1) robotic arm that uses and provide 

advanced haptic feedback technology, (2) the different tool handles that can be used in the 

simulated scenario, (3) 3D monitor, (4) pedals for activating fluoroscopy and (5) secondary 

monitor. B. The participant interacting with the platform. C. A variety of instruments are available 

accompanied by different handles to simulate each instrument haptics. D. The platform provides 

very realistic 3D graphics along with appropriate Xray images. Utilizing sophisticated haptic 

feedback technology, the TSYM Symgery simulator allows participants to experience tactile 

sensations and realistic tissue handling akin to actual surgical conditions. This system enhances 

the learning process by enabling trainees to develop essential surgical skills through interaction 

with virtual surgical instruments that mimic the look and feel of real tools used in spinal procedures 

(Figure 2.3 C and D). 

The simulator supports a variety of spinal surgical procedures, including complex tasks such as 

laminectomy and pedicle screw placement. Participants engage with these procedures using the 

simulated tool handles, gaining practical experience in a controlled environment. Complementing 

the tactile feedback, the TSYM Symgery simulator also offers comprehensive auditory and visual 

feedback, including sounds from patient cardiac monitoring and surgical instruments, which serve 

to deepen the immersion and realism of the training experience. 

Furthermore, the simulator is equipped with capabilities to record detailed performance metrics at 

ever 2 microseconds. This data collection includes metrics such as force applied, instrument 

tracking, tissue removal rates, velocity, and acceleration. Such data is crucial for the thorough 

assessment and feedback on participants’ performance. After completing a task, the simulator 

generates a three-dimensional vertebral body structure, highlighting the final positions of inserted 
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pedicle screws, thus providing feedback that can be used as an educational tool to visually 

demonstrate the outcomes of surgical actions. 

Considering these capabilities, the integration of the TSYM Symgery into neurosurgery and 

orthopedics residency programs could significantly enhance both the training and assessment of 

surgical skills, promoting a deeper comprehension of surgical expertise related to spinal 

procedures. Despite its potential, there is a notable lack of published data on its effectiveness or 

reliability, which is crucial for establishing its credibility as a training tool. At our lab another team 

is working on validating face, content, and construct validity of this simulator. 

Overall, TSYM spine simulator along with other VR simulators collectively represent a significant 

advancement in surgical training, offering diverse benefits from immersive experiences to accurate 

anatomical modeling. However, they also share common challenges, such as insufficient validation 

and limited procedural coverage. As these technologies continue to develop, ongoing research and 

evaluation are essential to ensure they meet educational standards and effectively enhance surgical 

competency in the field of spine surgery. 

Objective Assessment of Technical Skills using Machine Learning 

Techniques: 

The integration of VR simulation platforms in surgical education has significantly advanced the 

field by enabling detailed data collection from various aspects of surgical procedures. These 

platforms capture extensive data on instrument utilization, force exerted, instrument activation, 

and interactions with tissues, which are crucial for objectively assessing technical skills in surgery 

(Sawaya et al., 2017; Sugiyama et al., 2018). This rich dataset is instrumental in evaluating surgical 



32 
 

proficiency, particularly in neurosurgical training where precision and the gentle handling of 

delicate tissues are paramount. 

Excessive force application by surgical instruments, often linked to suboptimal outcomes, is a 

critical factor assessed during training. Innovative methodologies leveraging VR simulation data, 

such as force pyramid and force heatmap models, have been developed to provide both two-

dimensional and three-dimensional visualizations of force distribution (Sawaya et al., 2017; 

Azarnoush et al., 2016). These models are vital for imparting insights into effective surgical 

techniques and optimal hand postures, thereby enhancing surgical skill sets (Azarnoush et al., 

2016; Sawaya et al., 2017). Furthermore, these tools have demonstrated efficacy in differentiating 

between the skill levels of surgeons and delivering targeted feedback for improvements (Sawaya 

et al., 2018). 

To further enhance the objectivity in skill assessment, performance metrics have been established 

as a standard quantitative measure. These metrics assess key operational aspects such as safety, 

efficiency, quality, bimanual dexterity, and instrument maneuverability during simulated 

procedures (Alotaibi et al., 2015; AlZhrani et al., 2015; Bissonnette et al., 2019). For instance, the 

NeuroVR platform, capable of recording data at a rate of 50 points per second, analyzes 

approximately 6600 performance metrics from a single tumor resection task, highlighting the 

granularity and depth of the evaluation process (Winkler-Schwartz et al., 2019).  

In this context, AI is emerging as a transformative force in surgical training, introducing 'intelligent 

systems' that can process extensive datasets and provide high-fidelity assessments (Nagi et al., 

2023). These AI-driven systems deliver sophisticated feedback, akin to a human instructor, and 

play a pivotal role as decision-makers in educational settings. Despite initial overextensions in the 
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use of 'intelligence' in surgical training applications, the path towards fully integrated intelligent 

systems is evident and holds great promise for the future of surgical education. 

At the Neurosurgical Simulation and Artificial Intelligence Learning Centre, the Intelligent 

Continuous Expertise Monitoring System (ICEMS) exemplifies the application of AI in enhancing 

training outcomes (Yilmaz et al., 2022). This system assesses the bimanual performance of 

neurosurgical trainees by continuously analyzing surgical performance at intervals of 0.2 seconds 

and provides real-time feedback at the tool level. This intelligent tutoring system has shown 

proficiency in categorizing skill levels across different stages of surgical training—from students 

to neurosurgeons—and can predictively validate technical skills throughout a surgical residency. 

In a randomized controlled trial training with real-time ICEMS feedback resulted in significantly 

better performance outcomes compared to no real-time feedback and in-person instruction and  

similar OSATS ratings compared to in-person training with expert instruction (Yilmaz et al, 2024). 

Intelligent tutoring systems may help improve the methods that bimanual operating skills are 

assessed and taught, providing tailored, quantifiable feedback along with actionable instructions 

in real-time. The ICEMS is one of the few systems capable of real-time performance assessment 

using technologies like machine learning algorithms to analyze tool-generated data (Nagi et al., 

2023). 

The ongoing advancements in AI and VR technologies are set to revolutionize surgical training, 

promising more effective learning experiences and higher competency among future surgeons, 

thereby ensuring enhanced patient safety and care quality. 
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Machine Learning Algorithms and Feature Selection Methods: 

Features Selection: 

We used a combination of feature selection techniques to iterate the most important features to 

distinguish skilled versus less skilled performance of the screw. The rationale behind using 

multiple feature selection techniques is to leverage on various strong points of each technique like 

immunity against noise in data, robustness and generalizability.  We applied four primary methods 

for feature selection which are Wrapper Based, Embedded based, Filter Based and Weight Based. 

1. Wrapper Based Recursive Feature Elimination (REF) using an SVM model: The 

fundamental concept behind RFE is the iterative training of the model, eliminating the least 

important features until the optimal features are identified. This wrapper-based technique 

filters features based on their performance in predicting the output (classification) (Jeon & 

Oh, 2020). RFE can be used with various machine learning models, including Support 

Vector Machines (SVM), to rank features based on their importance. 

2. Embedded-Based Feature Selection Using Random Forest: This is a popular ensemble 

learning technique that is also an embedded method for feature selection. It is robust to 

overfitting and noise, providing stable feature importance rankings (Louppe, 2014). 

Random Forest can capture non-linear relationships between features and the target 

variable, making it a powerful tool for identifying and ranking important features in a 

dataset. 

3. Filter-Based Feature Selection: SelectKBest, is a filter-based method approach that 

utilizes statistical test scores to evaluate the relationship between each feature and the target 

variable. This method selects the top K features based on their scores from these tests, such 

as chi-square tests for classification tasks or ANOVA F-value for regression tasks (Fitriani 
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et al., 2022). The strength of SelectKBest lies in its simplicity and computational 

efficiency, making it suitable for high-dimensional datasets. By filtering features based on 

statistical relevance, SelectKBest effectively reduces dimensionality, helping to alleviate 

overfitting and enhance model performance (Fitriani et al., 2022). To determine the optimal 

value for K, various values were tested, and cross-validation was employed to identify the 

most influential features. This ensures that the selected features contribute significantly to 

the predictive power of the model. 

4. Weight Based: Weight-based feature selection in a multi-layer perceptron (MLP) involves 

identifying and prioritizing input features based on the weights assigned during the training 

process. In this methodology, each connection between neurons across all layers has an 

associated weight that determines the strength of the connection (Sun et al., 2013). During 

training, these weights are adjusted to minimize the error between predicted and actual 

outputs using the backpropagation algorithm. The significance of a feature is deduced from 

the magnitude of its associated weights; larger weights indicate a more pronounced 

influence on the network's output (Sun et al., 2013). This involves analyzing the combined 

effect of weights from the input layer through all hidden layers to the output layer. Features 

are ranked based on the absolute values of their weights across all layers, considering the 

product of weights along the paths from the input features to the output. By focusing on 

the features with the most significant cumulative weights, this method reduces noise and 

enhances the model's performance, providing a clear understanding of which features are 

most important for the network’s decisions. 
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Machine Learning Algorithms 

 A comprehensive benchmarking analysis can be used to assess the performance of diverse 

machine learning algorithms. The selected algorithms encompass a range of methodologies, 

including Support Vector Machine (SVM), Random Forest, K-Nearest Neighbours KNN), and 

ANN can be utilized as outlined below. 

1. Support Vector Machine (SVM):  A supervised machine learning algorithm, SVM can be  

employed for classification and regression tasks. It operates by identifying an optimal  

hyperplane that effectively separates data points within the input space. The crucial "support  

vectors" represent the data points closest to the decision boundary, influencing the  

hyperplane's position and orientation (Hearst et al., 1998). SVM strives to maximize the  

margin between classes in the training data, which contributes to a robust decision boundary. 

2. Random Forest: Random Forest stands as an ensemble learning algorithm that orchestrates 

 the construction of numerous decision trees during training and derives predictions by  

aggregating individual tree outputs, resulting in either the mode for classification or mean  

prediction for regression (Paul et al., 2018). In this process, each decision tree in the forest is  

trained on a random subset of the training data, introducing variability through bootstrapping 

or bagging. Additionally, randomness is injected by considering a random subset of features  

at each split in the decision tree. 

3.     K- Nearest Neighbours: K-Nearest Neighbors (KNN) stands as a straightforward and  

intuitive supervised machine learning algorithm, adept at handling both classification and  

regression tasks. In KNN, predictions hinge on either the majority class (for classification) or 

the average of neighboring data points (for regression) among the K nearest neighbors to a  

given input data point (Peterson, 2009). The algorithm efficiently stores the entire training  
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dataset in memory and, during prediction, identifies the K data points closest to the input 

 point using a distance metric, commonly the Euclidean distance. The predicted output is then 

determined by the majority class or the average value of the K neighbors. Exploration  

       involves tuning the model by experimenting with various parameter combinations.  

4.     Artificial Neural Network: An Artificial Neural Network (ANN) stands as a computational   

       model inspired by the intricate structure and functioning of the human brain. Comprising  

interconnected nodes (neurons) organized into layers (input, hidden, and output), ANNs  

undergo a learning process by adjusting the weights of connections between nodes  

(Krenker et al., 2011). This adjustment often guided by backpropagation, enables ANNs to  

discern patterns, along with relationships and representations within data.  
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Chapter 3 

 

Preface: 

 

Study Rational and Objectives: 

 

Rationale: 

 

The current landscape of spinal surgical education, particularly in the realm of pedicle screw 

insertion, faces significant challenges that are yet to be fully addressed by existing training 

methodologies. Despite the critical importance of pedicle screw insertion in spinal surgeries—a 

procedure known for its steep learning curve—there is a conspicuous gap in the application of 

advanced data-driven technologies to enhance surgical training. Current spine surgical simulators, 

while collecting vast amounts of operational data, have not been effectively utilized to dissect and 

improve the nuances of surgical performance, especially in tasks as complex and delicate as 

pedicle screw insertion (Sugiyama et al., 2018). 

With the rapid evolution of technology, particularly AI, there exists an unprecedented opportunity 

to revolutionize surgical training. AI's capability to process extensive datasets and generate 

meaningful insights into surgical performance can significantly advance training methodologies. 

This study aims to harness AI to analyze the extensive data captured by VR simulation platforms, 

specifically focusing on identifying the subtle patterns and critical parameters that distinguish 

skilled from novice performance in pedicle screw insertion. 

Integrating AI-driven assessments into the TSYM simulator promises to not only refine the 

evaluation and training of surgical skills but also to enhance the scope and quality of surgical 
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education in spine surgery. By developing and applying sophisticated models this study will 

provide a more structured and objective assessment of surgical proficiency, moving beyond the 

limitations of direct observation and subjective judgment (Azarnoush et al., 2016; Sawaya et al., 

2017). 

This approach will also address the significant risks associated with pedicle screw insertion, such 

as neural damage and other post-operative complications, by providing a platform for repetitive, 

focused training. This will enable less skilled trainees to master the necessary skills in a risk-free 

environment before performing human procedures, potentially decreasing the incidence of 

complications associated with less skilled errors. 

Overall, this study seeks to fill the critical gap in current surgical training for pedicle screw 

insertion by leveraging advanced AI tools to analyze performance data from VR simulators. This 

integration aims to elevate the training protocols, ensure a higher degree of precision and safety in 

surgical procedures, and ultimately enhance patient outcomes by fostering a deeper and more 

scientifically grounded understanding of the complexities involved in spine surgery. 

Objectives: 

The objectives of this case series study were to: 

 1) employ a combined feature selection process to identify the most important features that 

differentiate skilled and less skilled surgical performance for simulated pedicle screw insertion on 

the TSYM platform.  

2) Benchmark various machine learning algorithms to classify skilled versus less skilled 

performance of simulated pedicle screw insertion.  
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ABSTRACT 

 

IMPORTANCE: Our understanding of the composites of technical expertise during spinal 

procedures including the insertion of pedicle screws is incomplete. Datasets generated from 

surgical simulation allows the quantitation of psychomotor skills, which can be analyzed using 

machine learning algorithms which allows a more complete understanding of surgical 

performance. 

OBJECTIVE: The primary aim of this study was to identify important features distinguishing 

skilled and less skilled levels of expertise during simulated pedicle screw insertion. The secondary 

aim was to benchmark the classification accuracy of surgical performance through the 

implementation of machine learning algorithms. 

DESIGN: Participants from four universities were recruited between July 15, 2022, and May 31, 

2023, to participate in a case series study. Data were collected over a single time point and no 

follow-up data were collected. Participants were classified a priori as either skilled or less skilled 

based on their experience in performing human pedicle screw insertion procedures.  

SETTING: McGill University Neurosurgical Simulation and Artificial Intelligence Learning 

Centre. 

PARTICIPANTS: Forty-three neurosurgery and orthopedic spine surgeons, spine fellows, and 

neurosurgery and orthopedic residents. 

INTERVENTION: Insertion of bilateral L5 and L4 pedicle screw insertions on a virtual reality 

platform resulting in 172 inserted screws for analysis. These 172 datapoints were divided into 

training set (70% - 121 data points) and testing set (30% -51 data points) for algorithm’s training 

and testing. We used 5-fold cross validation to validate the algorithm. 



43 
 

EXPOSURES: All participants performed a simulated virtual reality L5-L4 bilateral pedicle screw 

insertion during which they each inserted 4 screws.  

MAIN OUTCOMES AND MEASURES The main outcomes and measures were determined 

through an iterative process, wherein features related to instrument movement, force application, 

and tissue resection were chosen from the raw simulator data output. This selection was achieved 

through a combination of four feature selection methods, wrapper-based, embedded, filter-based, 

and weight-based, in conjunction with Support Vector Machine (SVM), Random Forest, K-

Nearest Neighbor (KNN), and Artificial Neural Network (ANN) models. The objective was to 

accurately assess the skill levels of participants in simulated pedicle screw insertion.  

RESULTS A cohort of 43 participants, including 5 women and 38 men with a mean age of 33.6 

years (SD 9.5), was evaluated. Machine learning models demonstrated varying accuracies on the 

test set: SVM achieved 78%, Random Forest 80%, KNN 82.3%, and ANN 82.3%. Analysis 

revealed 24 common features across Random Forest, KNN, and ANN, each achieving a 

classification accuracy of over 80%. 

CONCLUSIONS AND RELEVANCE By employing machine learning algorithms, our study 

identified key features that may determine components of expertise during simulated pedicle screw 

insertion. We introduced a combined approach for feature selection that could enhance the 

accuracy of classifying skilled versus less skilled performance in future experiments. This method 

may prove valuable in the assessment and training of various surgical procedures.  

Introduction 

Surgical education is undergoing a transformative phase with the integration of advanced 

technologies aimed at enhancing training efficacy and patient safety (Varghese et al., 2024). Spinal 

procedures, including pedicle screw insertion, are complex due to the possible resulting injury to 
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surrounding anatomical structures. (Ansorge et al., 2023; Elmi-Terander & Skulason, 2023; Kim 

et al., 2004). The traditional apprenticeship model relies on subjective assessments and direct 

observation, which does not capture all composites of expertise of surgical performance 

(Hashimoto et al., 2018; Shahzad & Anwar, 2021). This has necessitated the exploration of more 

objective and quantitative methods to evaluate and enhance surgical skills, particularly in 

procedures known for their steep learning curves and high risk of complications, such as pedicle 

screw insertion (Andersen et al., 2023; Halvorsen et al., 2022). 

The advent of virtual reality (VR) simulation platforms has provided a forum for new research 

involving surgical training, allowing the simulation of real-world scenarios within controlled 

environments (Grillo, 2018; Polavarapu et al., 2013; Alaraj et al., 2015; Luciano et al., 2005; 

Luciano et al., 2011; Luciano et al., 2013). These simulators can derive large amounts of data 

involving complex surgical tasks and can provide real-time feedback to the learner (Mirchi et al., 

2020; Reich et al., 2022; Yilmaz et al., 2022). Despite their capabilities, there remains a significant 

gap in their utilization for psychomotor performance analysis, particularly involving the 

integration of Artificial Intelligence (AI) (Alaraj et al., 2015; Luciano et al., 2013). The capability 

of AI to process and analyze vast datasets generated from VR simulations provides an opportunity 

to improve surgical training by increasing our understanding of the critical metrics involved in 

surgical expertise (Winkler-Schwartz et al., 2019). The relative importance of each metric 

identified can be assessed by utilizing artificial neural networks (ANN) (Alkadri et al., 2021; 

Bakhaidar et al., 2023). By extracting detailed psychomotor performance data from simulation 

operative data, AI can provide insights into the surgical composites of expertise that differentiate 

less skilled and skilled operative performance (Dickman et al., 1992; Sundaresan et al., 1984). 



45 
 

Despite these advancements, the application of AI in the assessment of surgical performance for 

pedicle screw insertion has not been extensively explored (Jia et al., 2023; Ma et al., 2022). 

Existing research predominantly focuses on other types of simulated spinal interventions (Alkadri 

et al., 2021; Ledwos et al., 2021). Pedicle screw insertion is technically demanding and associated 

with significant variability in clinical outcomes, often contingent on the surgeon's skill and 

experience (Manbachi et al., 2014; McGaghie, 2015). Misplacement of pedicle screw can lead to 

severe complications, including neurological damage and structural instability, which underscores 

the critical need for comprehensive training and assessment (Gang et al., 2012; Gonzalvo et al., 

2009). 

The TSYM Symgery VR platform is a non immersive VR simulator, employs a robotic arm and 

various tool handles which utilizes advanced haptic feedback technology to provide a realistic 

operative experience. This system can simulate, record, and allows a detailed analysis of 

complicated spine procedures, such as lumbar pedicle screw insertion.  

The objectives of this case series study were 1) employing a novel performance metrics selection 

process identify the most important performance metrics that differentiate skilled and less skilled 

surgical performance for simulated pedicle screw insertion on the TSYM platform. 2) utilizing 

various machine learning algorithm improve classification of skilled vs less skilled performance 

of simulated pedicle screw insertion applying selected performance metrics found through novel 

approach.  
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Method 

 

Participants 

Forty-three neurosurgical and orthopedic residents, fellows, and neurosurgical and orthopedic 

spine surgeons participated in this case series study. Participants were categorized a priori into two 

groups: skilled and less skilled. The skilled group included individuals who had inserted at least 

one pedicle screw, either supervised or independently, during a human spinal procedure. The less 

skilled group consisted of participants with no such experience The skilled group included 

individuals who had inserted at least one pedicle screw, either under supervision or independently, 

during a human spinal procedure. The less skilled group consisted of participants with no such 

experience. This criterion of at least one pedicle screw insertion was chosen to ensure a balanced 

distribution of participants in each category. By setting the threshold at one screw, we aimed to 

achieve a more equitable representation between the skilled and less skilled groups. Additionally, 

the decision to create a-priori groups based on actual procedural experience, rather than traditional 

training levels, was made to gain deeper insights into skill levels. This approach allowed for a 

more nuanced understanding of expertise beyond just the amount of training. An informed consent 

approved by the Neurosciences-Psychiatry McGill University Health Center Research Ethics 

Board was signed by all participants. A demographic questionnaire was completed after consent 

and standardized written and verbal instructions regarding the steps and instruments available to 

complete the simulated L4-L5 bilateral pedicle screw insertion on the TSYM simulator were 

provided. A dry lab and an L2 simulated laminectomy procedure were used to acquaint participants 

with the TSYM simulator and simulated tools and their functions (Supplementary Digital Content).  

When these two tasks were completed, a simulated L4-L5 bilateral pedicle screw insertion was 

performed. Each step was dependent, and once completed, required participant confirmation 
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before proceeding. No time limit was imposed. All procedures followed were in accordance with 

the ethical standards of the responsible committee on human experimentation (institutional and 

national) and with the Declaration of Helsinki (World Medical Association, 2013). This report is 

structured according to guidelines for Best Practices in reporting studies on machine learning to 

assess surgical expertise in virtual reality simulation and the Strengthening the Reporting of 

Observational Studies in Epidemiology (STROBE) reporting guidelines (Cheng et al., 2016; 

Winkler-Schwartz et al., 2019). 

Figure 3.1 The virtual reality platform used to simulate the L5-L4 bilateral pedicle screw 

insertion. A. The TSYM simulator is designed to simulate various scenario. B. The platform 

provides very realistic 3D graphics along with appropriate Xray images. C. A variety of 

instruments are available accompanied by different handles to simulate each instrument haptics. 

D. Participant holds the instrument in their dominant hand, receiving haptic feedback when 

interacting with anatomic structure. E. The participant interacting with the platform. 
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Virtual Reality Simulator Platform 

 

In this study the TSYM Symgery simulation platform, developed by developed by Cedarome 

Canada Inc. dba Symgery, (Montreal, Canada), was utilized (Figure 3.1 A). The three-dimensional 

(3D) intraoperative spinal surgical procedures present in this simulator rely on a voxel-based 

system. In a voxel-based system, the anatomy is represented by small, three-dimensional cubes 

called voxels, which are the 3D equivalent of pixels in a 2D image (Ledwos et al., 2021). Each 

voxel contains specific information about the tissue it represents, such as density and composition, 

allowing for detailed and accurate simulation of surgical procedures. This approach enables the 

simulator to create a highly realistic and interactive environment for training and assessment 

(Figure 3.1 B) (Ledwos et al., 2021).  The simulator consists of a single haptic arm that provides 

continuous tactile feedback during operator manipulation of the surgical instruments employed to 

complete the task (Figure 3.1 C) and generates appropriate auditory and visual information for 

each tool employed. This system is equipped with pre-programmed surgical tools and captures 

multiple performance metrics, enabling a comprehensive surgical performance analysis. The 

pedicle screw insertion simulation task consists of one animated step and four deconstructed 

interactive steps. The animated step, where the animated lumber spine is exposed, is skipped in 

this study as the training for exposing the lumber spine is not within the scope. The focus is directly 

on the pedicle insertion task and its four interactive steps. The series of 4 deconstructive steps were 

repeated for each screw. For standardization purposes, users inserted 6.5 x 45 mm pedicle screws 

in a predetermined order left L5, left L4, right L5, right L4, inserted using a predefined 

magnification (Supplemental Digital Content Simulated L4 & L5 pedicle screw placement 

scenario). Participants could utilize simulated live X-ray fluoroscopy at any time during the 
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procedure to verify the entry point and angles for pedicle canulation and confirm inserted screw 

accuracy (Figure 3.1 D and E).  

Simulated Surgical Scenario 

There are four steps that participants need to perform in simulated L5-L4 bilateral pedicle screw 

insertion study. 1) pedicle cannulation with an Awl and pedicle finder, 2) breach verification using 

a ball tip, 3) pedicle pre-threading with the tap, and 4) pedicle screw insertion. Detailed step 

descriptions are available in Supplemental Digital Content Simulated L4 & L5 pedicle screw 

placement scenario. Collected data from all steps were used to assess and classify participants as 

skilled or less skilled. 

Data Processing 

Data Clean up 

In this study, we are considering tool-level data to assess the skill level of the participants. The 

TSYM simulator collects tool-level data every 2 microseconds while a participant performs the 

procedure on the simulator. During the pedicle insertion procedure, five tools are used: 1) Awl, 2) 

Pedicle Finder, 3) Ball Tip, 4) Tap Screw, and 5) Screwdriver. The data for each of these tools is 

stored in a .csv file within each participant's folder as they perform the procedure. To manage the 

vast amount of data collected every 2 microseconds, the data is averaged and reduced to one record 

per participant for each tool. Once each participant's data for each tool is gathered, it is arranged 

vertically with the data from the other tools for that participant. Ultimately, we have 65 features 

for each participant, with 13 features for each of the 5 tools, excluding participant ID, screw 

number, and label. Participants placed four screws during their trial, and the data for each screw is 

treated as an independent data point. This results in a total of 172 data points. 
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The alignment of the number of data points with the number of independent samples helps address 

the challenge of overdetermination, where the risk of having more data points than independent 

samples could lead to overlearning. To further mitigate these risks, we implement feature selection, 

reducing the dataset to 65 features—fewer than the number of independent samples. Additionally, 

we employ cross-validation to ensure that our models generalize well to new data, minimizing the 

risk of overfitting and enhancing the robustness of our findings. The architecture of the study can 

be found in Figure 3.2. 

 

 

 

 

 

 

Figure 3.2 Methodology for the use of machine learning algorithms to determine the 

optimal features and find out the classification accuracy. Users begin by performing the 

surgical task on the virtual reality platform. Raw data acquisition occurs as the platform 

creates large datasets for each instrument employed. All instrument datasets are combined 

into a single dataset of 172 data points. This dataset is then divided into training set (70%) 

and test set (30%). Using training set four different algorithms 1) SVM, 2) Random Forest, 

3) KNN 4) ANN are trained using training set with various feature selection techniques.  Each 

models’ performance was evaluated using test set. Twenty-four common important features 

were found amongst high performing algorithms Random Forest, KNN, and ANN. 
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Feature Generation and Refinement 

The simulation initially captured 37 variables for each tool, encompassing metrics such as time, 

position (X, Y, Z coordinates), instrument angles, forces exerted on anatomical structures (haptic 

force in X, Y, Z components), and the volume of structure removed (excised voxels for specific 

tissue). For more details, please refer to the Supplemental Digital Content Tool Data. Features with 

all zero values were removed, and new metrics, including 3D Velocity, 3D Acceleration, and 3D 

Force over time, were calculated and averaged to create a single participant record. This process 

reduced the original 37 features per tool to 13, resulting in a total of 65 distinct metrics (13 features 

for each of the 5 tools arranged horizontally) used for the feature selection process. Developed 

through expert consultations and innovative feature design, these metrics ensured relevance and 

applicability to surgical proficiency assessment.  

Data Preparation: The dataset included 172 data points, each representing data from four screws 

for each of the 43 participants. These data points were randomly divided into a training set (70%, 

121 data points) and a test set (30%, 51 data points), with the test set preserved exclusively for 

evaluation purposes. Each screw's data was treated as an independent data point, and the division 

was performed on a data point basis rather than participant-wise to ensure a more randomized 

distribution. Data normalization was performed using the ‘StandardScaler’ from the ‘sklearn’ 

library. Each machine learning algorithm was trained separately on the training dataset and 

evaluated on the test dataset. For each algorithm, 5-fold cross-validation (cv=5) was employed on 

the training set, ensuring robust performance evaluation. The test set was not used in any way 

during the training process, including during cross-validation, to ensure an unbiased evaluation of 

the model's performance. 

Feature Selection and Machine Learning Algorithms 
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This study uses four different feature selection methods: 1) Wrapper Based 2) Embedded based 

,3) Filter Based and 4) Weight Based. 

1) Wrapper-Based Recursive Feature Elimination (RFE): RFE iteratively trains the model 

and eliminates the least important features until the optimal feature set is identified. This 

wrapper-based technique filters features based on their performance in predicting the output 

(Jeon & Oh, 2020). It provides a robust and tailored feature selection, directly optimizing 

model performance by evaluating feature subsets during training. 

2) Embedded-Based Feature Selection Using Random Forest: Random Forest is an ensemble 

learning technique that ranks features based on their importance, as determined by their 

contribution to the decision trees within the forest (Louppe, 2014). It is robust to overfitting 

and noise, captures non-linear relationships, and provides stable and interpretable feature 

importance rankings. Because Random Forest performs feature selection as an inherent part of 

its training process, it is classified as an embedded method. This embedded feature selection 

ensures that the model identifies the most significant features in the dataset, enhancing the 

model's predictive performance. 

3) Filter-Based (SelectKBest) Feature Selection: SelectKBest evaluates each feature based on 

statistical test scores and selects the top K features with the highest scores. It is simple, 

computationally efficient, and suitable for high-dimensional datasets, effectively reducing 

dimensionality and enhancing model performance by selecting statistically relevant features 

(Fitriani et al., 2022). 

4) Weight-Based Feature Selection in a Multi-Layer Perceptron (MLP): This method 

identifies and prioritizes input features based on the weights assigned during the training 

process of an MLP, considering the cumulative weights from input to output layers. It provides 
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a clear understanding of feature importance within the neural network, reduces noise, and 

enhances model performance by focusing on features with significant cumulative weights (Sun 

et al., 2013). 

These four feature selection methods were used for the advantages they bring. These feature 

selection methods are used with four different machine learning algorithms 1) SVM (Wrapper 

based feature selection) 2) Random Forest (it has its own embedded feature selection)3) K-

Nearest Neighbours (Filter based- SelectKBest) and 4) Artificial Neural Network (Multi-Layer 

Perceptron) (Weight Based).  

1. Support Vector Machine with Wrapper based Recursive Feature Elimination feature 

selection: In this implementation, we utilized Recursive Feature Elimination (RFE) with 

an SVM classifier to identify the most important features and find out the classification 

accuracy. The SVM classifier, C (0.01), Kernel (linear), Gamma (scale), Degree (2), was 

employed as the estimator within the RFE model. By analyzing the ranking provided by 

RFE, we identified the top 31 features that had the greatest impact on the classification 

task. In the ranking, we selected features that had more than a 50% impact on classifying 

skilled and less skilled performance. 

2. Random Forest with embedded Feature selection:  In this implementation, we utilized 

a Random Forest classifier for feature selection and classification. A Random Forest 

classifier with 100 estimators and a random state of 0 was created. For feature selection, 

we employed ‘SelectFromModel’ with the Random Forest classifier. This method ranks 

features based on their importance, as determined by the Random Forest model. The 

threshold parameter was set to "median", meaning that features with importance above the 

median value were selected. This approach allowed us to leverage the Random Forest’s 
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embedded feature importance mechanism to identify and retain the most relevant features. 

By doing so, we improved the model's interpretability and ensured that it focused on 

features that significantly contributed to the classification task. 

3. K- Nearest Neighbours with Filter based SelectKBest: In this implementation, we 

utilized a K-Nearest Neighbors (KNN) classifier for feature selection and classification, 

employing the SelectKBest method to identify the most important features. Initially, we 

specified a range of k values to determine the optimal number of neighbors for the KNN 

classifier. Using SelectKBest, we selected the top k features based on their scores from 

statistical tests. This method ranks features according to their importance, and only the top 

k features are selected. Through our analysis, we determined that k=35 yielded the best 

classification accuracy, and therefore, we selected the top 35 features based on their rank 

and importance. 

4. Artificial Neural Network (Multi-Layer Perceptron) with Weight Based Feature 

Selection: In this implementation, we utilized an Artificial Neural Network (ANN) to 

perform classification and identify important features. We experimented with different 

hyperparameters to find the best-performing model. Specifically, we tested 70 learning 

rates (lr_values), 13 epochs (epochs_values), and 5 batch sizes (batch_sizes), resulting in 

a total of 4,550 models. For each combination of these hyperparameters, we built an ANN 

model with two hidden layers (64 and 32 neurons, respectively) and a sigmoid output layer 

for binary classification. The Adam optimizer was used to compile the model, with the loss 

function set to binary cross-entropy. 

The model was trained on the training set for each combination of hyperparameters, and 

its performance was evaluated on the test set. Predictions were converted to binary values 
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by setting a threshold of 0.5. The accuracy of the model on the test set was calculated, and 

the combination of hyperparameters (learning rate of 0.098 and 350 epochs) yielding the 

highest accuracy was identified as the best model. 

To extract important features, we examined the weights of the first hidden layer in the best-

performing model. The absolute values of these weights were averaged across all neurons 

to determine the feature importance scores. These scores indicate the contribution of each 

input feature to the network's decision-making process. By analyzing these scores, we 

identified 26 features that contributed more than 70% to classify skilled performance from 

less skilled performance. 

This method allowed us to systematically search for the optimal hyperparameters, build an 

accurate ANN model, and derive feature importance scores that highlight the influential 

features in the dataset. 

Results: 

Demographic data and relevant information concerning the two groups in this case series study are 

presented in Table 1. A total of 43 participants from four universities were included in this 

investigation. The skilled group (n=24) reported a mean of 1470 pedicle screws (SD = 675) 

inserted independently prior to the experiment while the less skilled group (n=19) reported a mean 

of 0 pedicle screws (SD = 0) inserted independently. The difference between the two groups was 

statistically significant, (P < .001). Since each participant inserted 4 screws, a total of 172 simulated 

screws were inserted. 
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Table 1: Demographics of 2 Groups of Participants 

Performing the virtual Reality Surgical Task 

  Skilled Less Skilled 

Age(Years) 

Mean, SD 36.8+7.3 29+2.7 

Sex 

Male 23 15 

Female 1 4 

Total Number of participants: 43 

  24 19 

Level of Training 

Neurosurgery Resident - - 

PGY1 - 7 

PGY2 - 2 

PGY3 - 3 

PGY4 1 2 

PGY5 2 1 

PGY6 3 1 

Orthopedic Resident - - 

PGY1 - 1 

PGY2 - 1 

PGY3 1 1 

PGY4 2 - 

PGY5 - - 

Spine Fellow 

Neurosurgical 5 - 

Orthopedic  3 - 

Spine Surgeon 

Neurosurgical 3 - 

Orthopedic 4 - 

Number of Reported Screws Inserted 

Mean, SD 1470+675 0+0 

Median (Range)     40(2-3000)     (0-0) 

          

              Table 1 Demographic Data of Participants 

 

Machine Learning Algorithm & Feature Selection: 

Using Recursive Feature Elimination (RFE) with an SVM model, we identified an optimized list 

of 31 impactful metrics and achieved an accuracy of 78% (40 out of 51) on the test set. For the 

Random Forest Classifier (RFC), we also identified 31 impactful features, demonstrating an 

accuracy of 80.3% (41 out of 51) on the test set. Using SelectKBest with K-Nearest Neighbors 
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(KNN), we iterated through values of K from 1 to 65 and identified the optimal configuration with 

a peak accuracy of 82.3% (42 out of 51) on the test set at K=35. This method yielded 35 most 

impactful features for classifying skill levels. In weight-based metric selection with an Artificial 

Neural Network (ANN), we achieved a peak accuracy of 82.3% (42 out of 51) on the test set and 

list of 26 features that contributed more than 70% in classification. Refer to Figure 3.3 for the 

confusion matrix of each algorithm and Table 2 for a detailed comparison between these 

algorithms. 

Algorithm Name 
Sensitivity 

(Recall) 
Specificity TestSet Accuracy 

F1 

Score 

AU 

ROC 

SVM 0.62 0.9 78 0.45 0.79 

Random Forest 0.64 0.93 80.3 0.48 0.82 

KNN 0.64 1 82.3 0.5 0.87 

ANN with All Features 0.65 0.96 82.3 0.51 0.85 

 

Table 2 Sensitivity, Specificity, Test Set Accuracy, F1 Score and AU ROC comparisons among 

the Algorithms Assessed in this Study 
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Figure 3.3 Confusion matrices of machine learning algorithms including SVM, Random 

Forest, KNN, ANN 

Machine learning algorithms—Random Forest, K-Nearest Neighbors (KNN), and Artificial 

Neural Network (ANN) (Multi-Layer Perceptron)—successfully classified skilled versus less-

skilled performance with an accuracy of over 80%. Because of their high accuracy, we used these 

algorithms to identify the key features contributing to accurately classifying skilled versus less-

skilled performance. By analyzing the results from all three algorithms, we identified 24 common 

features that were consistently deemed important, as detailed in Table 3. The relative importance 
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of these features, along with a comparison across different machine learning algorithms, is 

presented in Figure 3.4. This comprehensive analysis underscores the significance of these 24 

features in evaluating skill levels. These 24 common features can be categorised in three categories 

which are safety, motion and efficiency as shown in Table 3. 

 

 

Category Feature Name Description 

Safety: This category assesses 

the potential risks and impact 

on anatomical structures 

during the simulated surgical 

procedure. It includes 

measurements related to the 

volume removed, forces 

applied, and indications of 

cutting or removing tissue. 

CutVoxelsL4Vertebra_Pedifind 
 Measures the extent of tissues removal (volume) from the L4 vertebra using 

Pedicle Finder Tool, indicating potential impact on surrounding structures. 

AverageForceL4Vertebra_Tapscrew 
 Represents the average force applied to the L4 vertebra during the use of the 

Tap Screw Tool, indicating the stress exerted on the bone. 

AverageForceL4Vertebra_Scewdriv 
 Reflects the average force applied to the L4 vertebra using the Screwdriver 

Tool, offering insights into the forces involved in the procedure. 

AverageForceL5Vertebra_Awl 
 Indicates the average force applied to the L5 vertebra with the Awl Tool, 

providing information on the applied pressure during the procedure. 

3DForce_Pedifind 
Represents the force applied using the Pedicle Finder Tool, indicating the 

stress points in the procedure. 

MaxForce_Pedifind 
 Represents the maximum force applied using the Pedicle Finder Tool, 

indicating the highest stress points in the procedure. 

MaxForce_Tapscrew 
 Indicates the maximum force applied using the Tap Screw Tool, providing 

information on the peak force applied during the procedure. 

Figure 3.4: Relative importance of each feature in comparison to other algorithms 
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IsCutting_Awl 
 Binary indication of whether the Awl Tool is actively cutting or removing 

bone or soft tissue. 

IsCutting_Pedifind 
 Binary indication of whether the Pedicle Finder Tool is actively cutting or 

removing bone or soft tissue. 

3DForce_Awl 
Represents the force applied using the Awl Tool, indicating the force applied 

during the procedure. 

Motion: Focused on the 

movement dynamics of the 

simulated surgical tools, this 

category provides insights into 

the speed and acceleration of 

instruments during the 

procedure. 

3Dvelocity_Tapscrew Offering insights into the velocity of the Tap Screw Tool movement. 

3Dacceleration_Balltip 
Providing information on the Ball Tip Tool acceleration during the 

procedure. 

3Dacceleration_Pedifind 
Offering insights into the Pedicle Finder Tool acceleration during the 

procedure. 

Efficiency: Examines the 

efficiency of the simulated 

surgical procedure by 

considering factors such as 

precision, frequency of contact, 

instances of structure removal, 

duration of tool contact, and 

the overall path traversed by 

instruments. 

AvgContactrelTool_Pedifind 
Represents the average contact points between the Pedicle Finder Tool and 

the vertebra, offering details on the precision and frequency of contact. 

AvgContactrelTool_Awl 
 Represents the average contact points between the Awl Tool and the 

vertebra, providing information on the precision and frequency of contact. 

AvgContactrelTool_Balltip 
 Represents the average contact points between the Ball Tip Tool and the 

vertebra, offering insights into the precision and frequency of contact. 

AvgContactrelTool_Scewdriv 
 Represents the average contact points between the Screwdriver Tool and the 

vertebra, providing details on the precision and frequency of contact. 

AvgContactrelTool_Tapscrew 
 Represents the average contact points between the Tap Screw Tool and the 

vertebra, offering insights into the precision and frequency of contact. 

ToolContact_Awl 
Represents the contact points between the Awl Tool and the vertebra, 

providing information on the precision and frequency of contact. 

ToolContact_Balltip 
Represents the contact points between the Ball Tip Tool and the vertebra, 

providing information on the precision and frequency of contact. 

ToolContact_Pedifind 
Represents the contact points between the Pedicle Finder Tool and the 

vertebra, providing information on the precision and frequency of contact. 

ToolContact_Scewdriv 
Represents the contact points between the Screwdriver Tool and the 

vertebra, providing information on the precision and frequency of contact. 

ButtonPressed_Scewdriv Represents the efficiency of placing the screw using Screwdriver Tool. 

ToolContact_Tapscrew 
Represents the contact points between the Tap Screw Tool and the vertebra, 

providing information on the precision and frequency of contact. 

 

Table 3: Final selected metrics utilized data from the initial determination of KNN, Random 

Forest, and ANN with Safety, Movement and Efficiency categories. 

 

Discussion 

In this case series study, we employed a feature selection approach to determine the most effective 

performance metrics that distinguish skilled and less skilled performance in a pedicle screw 
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insertion simulation utilizing the TSYM platform.  The use of single feature selection techniques 

with the corresponding machine learning algorithms to determine important metrics may fail to 

identify key metrics that underly surgical expertise (Pudjihartono et al., 2022). Using combination 

of various feature selection method might help to address this issue. We found the 24 common 

features among three algorithms, which shows the importance of those features to classify 

performance.  This resulted in outlining more holistic features which are robust, generalizable, and 

precise which might help ensuring comprehensive data coverage and minimize biases inherent in 

single-method analyses. The next step of this study could be to gather more data from more 

participants and feed only selected 24 features to further analyse the potential of these 24 features 

to classify skill level of participants for screw’s performance  

In previous investigations by our group assessing resident and fellow psychomotor skill levels by 

an intelligent tutor called the Intelligent Continuous expertise Monitoring System (ICEMS) trainee 

average performance score correlated with post graduate year of training, however, there was a 

wide variation in individual learner performance (Yilmaz et al.,2023). Categorizing participant 

data solely based on their training level could lead to incorrect data labeling resulting in inaccurate 

classification in machine learning models (Luciano et al., 2013). In this investigation actual 

experience with inserting pedicle screws during human operative procedures was utilized to a 

priori categorize expertise rather than trainee post graduate year. This categorization was based on 

the principle that if surgical educators allowed trainees to insert a pedicle screw into a patient’s 

spine essential components of the anatomy, procedural steps, and possible complications were 

appreciated by the learner. Physically inserting the pedicle screw either under supervision or 

independently would provide further tactile and procedural cognitive information and enhanced 
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support for that trainee being categorized as having more skills to perform the simulation.  Trainees 

with no such clinical exposure were considered less skilled.   

Artificial Intelligence in Surgical Education 

The ability to utilize the large data sets generated from spine simulation models, will allow AI 

algorithms to further increase the precision and granularity of classification of surgical expertise 

utilizing VR spine platforms (Reich et al., 2022).  However, it also risks issue of over 

determination, which can limit the generalization of the outcome, which needs to be tackled by 

cross verifications and data pruning which can remove noise of the data to an extent. Despite the 

risk, incorporating virtual reality simulation for performing complex procedures into the spine 

surgery learning curriculum may particularly benefit less skilled learners and be useful as potential 

formative and summative educational tools. Artificial intelligence methodologies with their ability 

to generate large amounts of data may identify new features and rank their importance allowing 

surgical instructors to focus on teaching these important features related to surgical skills.  

Employing deep learning algorithms and novice and expert data intelligent tutoring systems can 

be developed and tested (Yilmaz et al., 2022; Reich et al., 2022). Human educator input care is 

required in developing these programs to prevent unintended outcomes (Fazlollahi et al., 2023).  

Limitations 

The TSYM simulation platform has limitations. The pedicle screw insertion simulation does not 

capture the dynamic human intraoperative environment where continuous surgical educator 

personalized feedback to the learner is crucial. The simulated procedure is designed with one 

animated and four deconstructed steps in a linear, unidirectional sequence, which does not reflect 

the flexible and adaptive approach required during human pedicle screw insertion. Unrealistic 

details of the simulation might affect the performance of an expert, especially in the initial phase 
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of adjusting to the simulator’s feel and haptic. The TSYM platform offers a range of screw sizes 

and lengths, to standardize the procedure, a fixed-size screw was utilized which does not allow 

exploration of the learners' ability to appreciate the importance of screw dimensions in spinal 

surgery. Each pedicle screw insertion was evaluated individually but other studies are needed to 

assess the impact of repeated pedicle screw insertions on participant learning curves. The simulator 

platform consists of a single-handed robotic arm, not reproducing the bimanual technical skills 

employed in patient spinal procedures (Mirchi et al., 2020; Yilmaz et al., 2022; Alotaibi et al., 

2015; Reich et al., 2022; Anderson et al., 2016; Wongworawat, 2016). Enhancing the TSYM 

platform to allow for bimanual usage would provide a more comprehensive assessment of surgical 

expertise. Measurement errors inherent to the simulator architecture may be present and employing 

other pedicle screw insertion simulators to validate these results is important. Studies to benchmark 

the performance of various algorithm and derive common important features among those 

algorithms involving different pedicle screw insertion simulators will be important. Further 

analysis is needed to conclude the importance of the individual features that this study found 

important. This underscores the need for independent testing before drawing definitive conclusions 

about the accuracy of our findings (Handelman et al., 2018; Wongworawat, 2016).  

Conclusion 

In this case series study, we benchmarked the performance of various machine learning algorithms 

and identified key features that may represent expertise during simulated pedicle screw insertion. 

The combination of feature selection techniques outlined here demonstrated the potential for 

improved accuracy in future studies, enhancing the classification of skilled and less-skilled 

performance. These findings have significant implications for the understanding, assessment, and 

training of all surgical procedures. 



64 
 

 

References 

1. Alaraj, A., Charbel, F. T., Birk, D., et al. (2013). Role of cranial and spinal virtual and 

augmented reality simulation using immersive touch modules in neurosurgical training. 

Neurosurgery, 72(suppl 1). 

2. Alaraj, A., Luciano, C. J., Bailey, D. P., et al. (2015). Virtual reality cerebral aneurysm clipping 

simulation with real-time haptic feedback. Operative Neurosurgery, 11(1), 52-58. 

3. Alkadri, S., Ledwos, N., Mirchi, N., et al. (2021). Utilizing a multilayer perceptron artificial 

neural network to assess a virtual reality surgical procedure. Computers in Biology and 

Medicine, 136, 104770. https://doi.org/10.1016/j.compbiomed.2021.104770 

4. Alotaibi, F., Al Zhrani, G., Bajunaid, K., Winkler-Schwartz, A., Azarnoush, H., & Mullah, M. 

(2015). Assessing neurosurgical psychomotor performance: Role of virtual reality simulators, 

current and future potential. SOJ Neurology, 2(1), 1-7. 

5. Andersen, D. S., Konge, L., & Sørensen, M. S. (2023). Advances in the objective assessment 

of technical skills in surgery. Annals of Surgery, 277(4), 654-661. 

https://doi.org/10.1097/SLA.0000000000005817 

6. Anderson, D. D., Long, S., Thomas, G. W., Putnam, M. D., Bechtold, J. E., & Karam, M. D. 

(2016). Objective structured assessments of technical skills (OSATS) does not assess the 

quality of the surgical result effectively. Clinical Orthopaedics and Related Research, 474(4), 

874-881. https://doi.org/10.1007/s11999-015-4603-4 

7. Ansorge, A., Sarwahi, V., Bazin, L., Vazquez, O., De Marco, G., & Dayer, R. (2023). Accuracy 

and safety of pedicle screw placement for treating adolescent idiopathic scoliosis: A narrative 

review comparing available techniques. Diagnostics, 13(14), 2402. 

https://doi.org/10.3390/diagnostics13142402 

https://doi.org/10.1016/j.compbiomed.2021.104770
https://doi.org/10.1097/SLA.0000000000005817
https://doi.org/10.1007/s11999-015-4603-4
https://doi.org/10.3390/diagnostics13142402


65 
 

8. Bakhaidar M., Alsayegh A., Yilmaz R, et al. (2023) Performance in a Simulated Virtual Reality 

Anterior Cervical Discectomy and Fusion Task: Disc Residual, Rate of Removal, and 

Efficiency Analyses. Oper Neurosurg (Hagerstown). 2023 Oct 1;25(4):e196-e205. doi: 

10.1227/ons.0000000000000813. Epub 2023 Jul 13.  

9. Cheng, A., Kessler, D., Mackinnon, R., et al. (2016). Reporting guidelines for health care 

simulation research: Extensions to the CONSORT and STROBE statements. Simulation in 

Healthcare, 11(4), 238-248. https://doi.org/10.1097/SIH.0000000000000150 

10. Deo, R. C. (2015). Machine learning in medicine. Circulation, 132(20), 1920-1930. 

https://doi.org/10.1161/CIRCULATIONAHA.115.001593 

11. Dickman, C. A., Fessler, R. G., MacMillan, M., et al. (1992). Transpedicular screw-rod fixation 

of the lumbar spine: Operative technique and outcome in 104 cases. Journal of Neurosurgery, 

77, 860-870. 

12. Elmi-Terander, A., & Skulason, H. (2023). Pedicle screw placement accuracy in robot-assisted 

versus image-guided freehand surgery of thoracolumbar spine: A randomized controlled trial. 

Trials, 24, 387. https://doi.org/10.1186/s13063-023-07309-7 

13. Fazlollahi, A. M., Yilmaz, R., Winkler-Schwartz, A., et al. (2023). AI in surgical curriculum 

design and unintended outcomes for technical competencies in simulation training. JAMA 

Network Open, 6(9). https://doi.org/10.1001/jamanetworkopen.2023.34658 

14. Fitriani, S. A., Astuti, Y., & Wulandari, I. R. (2022). Least absolute shrinkage and selection 

operator (LASSO) and k-nearest neighbors (k-NN) algorithm analysis based on feature 

selection for diamond price prediction. In Proceedings of the 2021 International Seminar on 

Machine Learning, Optimization, and Data Science (ISMODE) (pp. 135-139). Jakarta, 

Indonesia. https://doi.org/10.1109/ISMODE53584.2022.9742936 

https://doi.org/10.1097/SIH.0000000000000150
https://doi.org/10.1161/CIRCULATIONAHA.115.001593
https://doi.org/10.1186/s13063-023-07309-7
https://doi.org/10.1001/jamanetworkopen.2023.34658
https://doi.org/10.1109/ISMODE53584.2022.9742936


66 
 

15. Gang, C., Haibo, L., Fancai, L., Weishan, C., & Qixin, C. (2012). Learning curve of thoracic 

pedicle screw placement using the free-hand technique in scoliosis: How many screws needed 

for an apprentice? European Spine Journal, 21(6), 1151-1156. https://doi.org/10.1007/s00586-

011-2065-2 

16. Gonzalvo, A., Fitt, G., Liew, S., et al. (2009). The learning curve of pedicle screw placement: 

How many screws are enough? Spine (Phila Pa 1976), 34(21). 

https://doi.org/10.1097/BRS.0b013e3181b2f928 

17. Grillo, H. C. (2018). To impart this art: The development of graduate surgical education in the 

United States. Surgery, 125(1), 1-14. 

18. Halvorsen, F. H., Elle, O. J., et al. (2022). The role of artificial intelligence in the objective 

assessment of surgical skills. International Journal of Medical Robotics and Computer 

Assisted Surgery, 18(1). https://doi.org/10.1002/rcs.2354 

19. Handelman, G. S., Kok, H. K., Chandra, R. V., Razavi, A. H., Lee, M. J., & Asadi, H. (2018). 

eDoctor: Machine learning and the future of medicine. Journal of Internal Medicine, 284(6), 

603-619. https://doi.org/10.1111/joim.12822 

20. Hashimoto, D. A., Rosman, G., Rus, D., & Meireles, O. R. (2018). Artificial intelligence in 

surgery: Promises and perils. Annals of Surgery, 268(1), 70-76. 

https://doi.org/10.1097/SLA.0000000000002693 

21. Jeon, H., & Oh, S. (2020). Hybrid-recursive feature elimination for efficient feature selection. 

Applied Sciences, 10(9), 3211. https://doi.org/10.3390/app10093211 

22. Jia, S., Weng, Y., Wang, K., et al. (2023). Performance evaluation of an AI-based preoperative 

planning software application for automatic selection of pedicle screws based on computed 

https://doi.org/10.1007/s00586-011-2065-2
https://doi.org/10.1007/s00586-011-2065-2
https://doi.org/10.1097/BRS.0b013e3181b2f928
https://doi.org/10.1002/rcs.2354
https://doi.org/10.1111/joim.12822
https://doi.org/10.1097/SLA.0000000000002693
https://doi.org/10.3390/app10093211


67 
 

tomography images. Frontiers in Surgery, 10, 1247527. 

https://doi.org/10.3389/fsurg.2023.1247527 

23. Kim, Y. J., Lenke, L. G., Bridwell, K. H., Cho, Y. S., & Riew, K. D. (2004). Free hand pedicle 

screw placement in the thoracic spine: Is it safe? Spine (Phila Pa 1976), 29(3), 333-342. 

https://doi.org/10.1097/01.BRS.0000109983.12113.9B 

24. Ledwos, N., Mirchi, N., Bissonnette, V., Winkler-Schwartz, A., Yilmaz, R., & Del Maestro, R. 

F. (2021). Virtual reality anterior cervical discectomy and fusion simulation on the novel sim-

ortho platform: Validation studies. Operative Neurosurgery, 20(1), 74-82. 

https://doi.org/10.1093/ons/opaa269 

25. Louppe, G. (2014). Understanding random forests: From theory to practice. arXiv. Published 

online July 28, 2014. https://arxiv.org/abs/1407.7502 

26. Luciano, C., Banerjee, P., Florea, L., & Dawe, G. (2005). Design of the immersivetouch: A 

high-performance haptic augmented virtual reality system. Presented at the 11th International 

Conference on Human-Computer Interaction, Las Vegas, NV. 

27. Luciano, C. J., Banerjee, P. P., Bellotte, B., et al. (2011). Learning retention of thoracic pedicle 

screw placement using a high-resolution augmented reality simulator with haptic feedback. 

Operative Neurosurgery, 69(suppl 1). 

28. Luciano, C. J., Banerjee, P. P., Sorenson, J. M., et al. (2013). Percutaneous spinal fixation 

simulation with virtual reality and haptics. Neurosurgery, 72(suppl 1), 89-96. 

29. Ma, C., Zou, D., Qi, H., et al. (2022). A novel surgical planning system using an AI model to 

optimize planning of pedicle screw trajectories with highest bone mineral density and strongest 

pull-out force. Neurosurgical Focus, 52(4). https://doi.org/10.3171/2022.1.FOCUS21721 

https://doi.org/10.3389/fsurg.2023.1247527
https://doi.org/10.1097/01.BRS.0000109983.12113.9B
https://doi.org/10.1093/ons/opaa269
https://arxiv.org/abs/1407.7502
https://doi.org/10.3171/2022.1.FOCUS21721


68 
 

30. Manbachi, A., Cobbold, R. S., & Ginsberg, H. J. (2014). Guided pedicle screw insertion: 

Techniques and training. The Spine Journal, 14(1), 165-179. 

https://doi.org/10.1016/j.spinee.2013.03.029 

31. McGaghie, W. C. (2015). Mastery learning: It is time for medical education to join the 21st 

century. Academic Medicine, 90(11), 1438-1441. 

https://doi.org/10.1097/ACM.0000000000000911 

32. Mirchi, N., Bissonnette, V., Yilmaz, R., Ledwos, N., et al. (2020). The Virtual Operative 

Assistant: An explainable artificial intelligence tool for simulation-based training in surgery 

and medicine. PLoS One, 15(2). https://doi.org/10.1371/journal.pone.0229596 

33. Polavarapu, H. V., Kulaylat, A. N., Sun, S., & Hamed, O. H. (2013). 100 years of surgical 

education: The past, present, and future. Bulletin of the American College of Surgeons, 98(7), 

22-27. 

34. Pudjihartono, N., Fadason, T., Kempa-Liehr, A. W., & O’Sullivan, J. M. (2022). A review of 

feature selection methods for machine learning-based disease risk prediction. Frontiers in 

Bioinformatics, 2, 927312. https://doi.org/10.3389/fbinf.2022.927312 

35. Reich, A., Mirchi, N., Yilmaz, R., et al. (2022). Artificial neural network approach to 

competency-based training using a virtual reality neurosurgical simulation. Operative 

Neurosurgery, 23(1), 31-39. https://doi.org/10.1227/ons.0000000000000173 

36. Shahzad, S., & Anwar, M. I. (2021). Apprenticeship model in 21st century’s surgical education: 

Should it perish? Archives of Surgical Research, 2(3), 1-3. https://doi.org/10.48111/2021.03.01 

37. Sun, X., Liu, Y., Xu, M., et al. (2013). Feature selection using dynamic weights for 

classification. Knowledge-Based Systems, 37, 541-549. 

https://doi.org/10.1016/j.knosys.2012.10.001 

https://doi.org/10.1016/j.spinee.2013.03.029
https://doi.org/10.1097/ACM.0000000000000911
https://doi.org/10.1371/journal.pone.0229596
https://doi.org/10.3389/fbinf.2022.927312
https://doi.org/10.1227/ons.0000000000000173
https://doi.org/10.48111/2021.03.01
https://doi.org/10.1016/j.knosys.2012.10.001


69 
 

38. Symgery. (2023). Document compilation. Retrieved from https://symgery.com/wp-

content/uploads/2023/10/T-SYM_Doc_Comp.pdf 

39. Sundaresan, N., Galicich, J. H., & Lane, J. M. (1984). Harrington rod stabilization for 

pathological fractures of the spine. Journal of Neurosurgery, 60, 282-286. 

40. Varghese, C., Harrison, E. M., O’Grady, G., et al. (2024). Artificial intelligence in surgery. 

Nature Medicine, 30(10), 1257-1268. https://doi.org/10.1038/s41591-024-02970-3 

41. Winkler-Schwartz, A., Yilmaz, R., Mirchi, N., et al. (2019). Machine learning identification of 

surgical and operative factors associated with surgical expertise in virtual reality simulation. 

JAMA Network Open, 2(8). https://doi.org/10.1001/jamanetworkopen.2019.8363 

42. Wongworawat, M. D. (2016). Editor's spotlight/take 5: Objective structured assessments of 

technical skills (OSATS) does not assess the quality of the surgical result effectively. Clinical 

Orthopaedics and Related Research, 474(4), 871-873. https://doi.org/10.1007/s11999-015-

4677-z 

43. World Medical Association. (2013). World Medical Association Declaration of Helsinki: 

Ethical principles for medical research involving human subjects. JAMA, 310(20), 2191-2194. 

https://doi.org/10.1001/jama.2013.281053 

44. Yilmaz, R., Winkler-Schwartz, A., Mirchi, N., et al. (2022). Continuous monitoring of surgical 

bimanual expertise using deep neural networks in virtual reality simulation. NPJ Digital 

Medicine, 5(1), 54. https://doi.org/10.1038/s41746-022-00596-8 

https://symgery.com/wp-content/uploads/2023/10/T-SYM_Doc_Comp.pdf
https://symgery.com/wp-content/uploads/2023/10/T-SYM_Doc_Comp.pdf
https://doi.org/10.1038/s41591-024-02970-3
https://doi.org/10.1001/jamanetworkopen.2019.8363
https://doi.org/10.1007/s11999-015-4677-z
https://doi.org/10.1007/s11999-015-4677-z
https://doi.org/10.1001/jama.2013.281053
https://doi.org/10.1038/s41746-022-00596-8


70 
 

 

Chapter 4 

Thesis Summary 

This thesis investigates the application of machine learning utilizing VR surgical simulators, with 

a specific focus on pedicle screw insertion—a complex and critical technique in spine surgery. The 

study utilizes a high-fidelity VR simulator to evaluate the efficacy of machine learning algorithms 

in accurately classifying surgical expertise among participants. This research addresses the need 

for objective and reliable assessment tools in surgical education, particularly under the constraints 

faced by physician-educators balancing clinical responsibilities and educational demands. 

Utilizing four different feature selection techniques employed in the study include Recursive 

Feature Elimination, Embedded with Random Forest Classifier (RFC), Filter based, and Weight-

Based methods. These methodologies are utilized to identify and prioritize features that effectively 

differentiate between less skilled and skilled participants. The integration of these diverse feature 

selection methods enhances the analysis by capturing complex, non-linear relationships, 

minimizing overfitting, and thereby improving the predictive accuracy of the models. 

Another key outcome of this thesis is the benchmarked performance of various machine learning 

algorithms, including SVM, Random Forest, KNN, and ANN, three of which demonstrated the 

ability to classify surgical expertise with over 80% accuracy. Additionally, we identified 24 

common features among three of these algorithms, highlighting the critical factors in assessing 

surgical performance involving L4-L5 pedicle screw insertion on the TSYM simulation platform.  

These results outline the potential of AI-enhanced VR simulators to advance training and 

assessment in surgical education, particularly for intricate procedures such as pedicle screw 

insertion. 
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By focusing on selected common features, the AI model aligns its findings with practical surgical 

knowledge and the nuanced skills that distinguish skilled individuals from less skilled learners. 

For instance, metrics related to the handling of the Awl and Pedicle Finder tools reflect the 

techniques used to identify correct entry points and apply the appropriate forces necessary for 

successful pedicle screw placement—skills important in minimizing tissue damage and enhancing 

surgical outcomes. 

In conclusion, this case series study by employing machine learning algorithms outlines important 

features which determine novel composites of expertise during simulated pedicle screw insertion. 

This investigation introduces a combined feature selection approach which might help in achieving 

improved accuracy in classifying skilled and less skilled performance which may have utility in 

the assessment and training of all surgical procedures.  

Future Direction 

Building on the results of this study, which established benchmarked data for distinguishing 

between skilled and less skilled trainee performance levels in pedicle screw insertion, several 

promising avenues for future research have been identified. 

Further Improve the Classification Accuracy by Employing Selected 24 Features: The next 

step of this study is to recruit more participants to gather additional data points, enabling further 

training and testing of the algorithms using the selected 24 features. This will provide a more 

robust understanding of these features as key indicators of surgical skill. The insights gained can 

then be used to enhance training programs by focusing on the skills identified as most important. 

Development of the ICEMS System for Spine Surgery: On acquiring a more robust 

understanding of the features and their impact on classification, the next logical step is to extend 

the capabilities of the Intelligent Continuous Expertise Monitoring System (ICEMS) specifically 
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for spine surgery tasks such as pedicle screw insertion. Leveraging the benchmarked data 

generated in this study, the proposed ICEMS for spine pedicle screw insertion surgery will aim to 

provide real-time, personalized feedback and assessment tailored to the requirements of individual 

components of these spinal procedures. This advancement will facilitate more targeted and 

effective training, potentially reducing the learning curve for trainees and enhancing overall 

surgical proficiency. 

Investigation of Learning Curves: A component of this study was the requirement for 

participants to place four screws during the simulation. Future research could analyze the data 

collected to determine whether a learning curve is evident across these repetitive tasks. By 

assessing performance improvements after each screw placement, researchers can gain insights 

into the efficacy of simulation-based training and the potential for accelerated skill acquisition 

through repetitive practice. 

Comprehensive Performance Assessment System: To create a more robust system for 

evaluating surgical performance, it is proposed to integrate tool data with OSATS and visual 

subjective classification of pedicle screw placement. By combining these diverse data sources, a 

comprehensive assessment framework can be developed that not only evaluates technical 

proficiency but also considers the qualitative aspects of surgical tasks. Such a multidimensional 

approach may lead to increased understanding of surgical competence and could lead to the 

development of a more robust AI-driven assessment model. 

These future directions underscore the potential to significantly advance surgical training and 

assessment methodologies through the integration of AI and VR technologies. By deepening the 

analysis of learning processes and enhancing the accuracy of performance assessments, these 
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initiatives will contribute to the refinement of surgical education and, ultimately, to improvements 

in patient outcomes in spine surgery. 
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Supplemental Digital Content  

 

Methods.  

Simulated L4 & L5 pedicle screw placement scenario 

 

Dry Lab: 

Before starting the simulation, you will go through the dry lab. The dry lab will help you get acquainted with the 

instruments and the haptic handle. Follow the on-screen instructions to perform this step. This part of the simulation 

will not be used for evaluation.  

With the straight handle: (Please note that you will need to detach the handle after you finish using an instrument in 

the dry lab only). 

 

1. Using the Awl, create one hole in the simulated wooden object. You will feel resistance from the haptic 

handle once you reach the object's surface.  

• Press   at bottom left and exit the simulation. 

 

2. Using the burr, drill any one sphere. You can move the screen to appreciate the shape of the sphere.  

• Once done, press  at bottom left and exit the simulation. 

 

3. Using the pedicle finder, create one trajectory in the simulated object. 

• Once done, press confirm and Exit. 

 

With the Kerrison handle:  

 

1. Using the Kerrison, remove only three bites of the simulated object. 

• Zoom in as per your convenience. 

• Whenever you see the pantry dish at the side of the simulation, make sure you empty your Kerrison. 
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• Once done, press  at bottom left and exit the simulation. 

After the Dry Lab is over, call the trial attendee. 

Instructions for Pedicle Screw Placement  

Objective: You will perform an L5 and L4 pedicle screw placement using four pedicle screws. 

The simulation starts at the stage where the lumbar spine is completely exposed.  

Note: 

1. The magnification is standardized for the whole procedure. Please avoid changing it.  

2. The current step of the procedure will appear in bold on the left of the screen.  

3. The simulated anatomical model/ the working area will appear at the center of the screen. 

4. You can see fluoroscopy images during the procedure, which will appear in the screen's top right corner.  

5. The tools that you can use during the procedure are displayed at the bottom of the screen. 

6. Perform all the steps of screw placement of each pedicle screw before going to the next screw. 

Steps of the Procedure:  

Step 1 – Entry Point Creation (Refer to Figure 5) 

 

• Using the Awl, choose the entry point of the left L5 pedicle screw. You can verify your entry point using 

fluoroscopy. 

• To initiate the fluoroscopy, press the right pedal of the foot switch. After that, with the left pedal, 

you can observe the real-time position of the tools. You can change the fluoroscopic view by 

pressing LAT (lateral view) or AP (anterior/posterior) on the right side.  

• To go back to the surgery, press the right pedal. 

• Once you are satisfied with the entry point, press  to go to the next step. 
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     Figure 5: Entry Point Creation 

 

Step 2 – Entry Point Creation with Pedicle Finder (Refer to Figure 6) 

 

• Using the pedicle finder, create a channel in the pedicle. 

 

• You can verify the trajectory using fluoroscopy. 

• To initiate the fluoroscopy, press the right pedal of the foot switch. After that, with the left pedal, 

you can observe the real-time position of the tools. You can change the fluoroscopic view by 

pressing LAT (lateral view) or AP (anterior/posterior) on the right side.  

• To go back to the surgery, press the right pedal. 

 

• As shown in figure 6, the depth of the instrument will appear at the top center of the screen. 

 

• Once you are satisfied with the depth, press to go to the next step.  
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    Figure 6: Entry Point Creation Using a Pedicle Finder 

 

Step 3 – Channel Breach Verification (Refer to Figure 7) 

 

 

• Using the 2 mm ball tip probe, check for the presence or absence of a pedicle breach.  

• As shown in Figure 7, choose whether you felt that you had created a pedicle breach or not, and then select 

. 

 

 

Figure 7: Channel Breach Verification 

Step 4 – Tap Insertion (Refer to Figure 8) 
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• Using the 5.5 mm tap, tap the previously created channel in the pedicle. 

 

 

• You can verify the tap insertion using fluoroscopy. 

• To initiate the fluoroscopy, press the right pedal of the foot switch. After that, with the left pedal, 

you can observe the real-time position of the tools. You can change the fluoroscopic view by 

pressing LAT (lateral view) or AP (anterior/posterior) on the right side.  

• To go back to the surgery, press the right pedal. 

 

 

• Once you are satisfied with the tap, press  to go to the next step. 

 

 

Figure 8: Tap Insertion 

Step 5 – Pedicle Breach Verification 

 

 

• Using a 2mm ball tip probe, check for the presence or absence of a pedicle breach.  

• Choose whether you felt that you created a pedicle breach or not and select . 

 

 

 

Step 6 – Screw Insertion (Refer to Figure 9) 
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• Select the screwdriver from the instrument list.  

• A screen will appear asking you to choose the diameter and length of the screw. Select 6.5mm for the screw 

diameter and 45mm for the screw length. 

• Insert the selected screw by rotating the screwdriver. To release the screw from the screwdriver, press the 

button on the handle. 

• You can verify the screw insertion using fluoroscopy. 

• To initiate the fluoroscopy, press the right pedal of the foot switch. After that, with the left pedal, 

you can observe the real-time position of the tools. You can change the fluoroscopic view by 

pressing LAT (lateral view) or AP (anterior/posterior) on the right side.  

• To go back to the surgery, press the right pedal. 

 

 

Figure 9: Screw Insertion 

 

 

 

• Step 7: Repeat Steps 1-6 for the left L4 pedicle. 

• After finishing the left L4 pedicle, you can click the orientation button  in the bottom left to switch to the 

right side of the patient.  

 

• Step 8: Repeat Steps 1-6 for the right L5 pedicle. 
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• Step 9: Repeat Steps 1-6 for the right L4 pedicle.  

 

• After completing all pedicle screw placements, swipe up at the left side of the screen and select "Yes, See 

Results."  

 

• The Pedicle Screw Placement scenario concludes now. Please call for the trial attendee to guide you in 

the next phase. 

 

List of 65 Metrics Generated by the TSYM Simulator Platform 

 

No Features Description 

1 3Dacceleration_Awl Acceleration using Awl Tool 

2 3Dacceleration_Balltip Acceleration using Ball Tip Tool 

3 3Dacceleration_Pedifind Acceleration using Pedicle Finder Tool 

4 3Dacceleration_Scewdriv Acceleration using Screwdriver Tool 

5 3Dacceleration_Tapscrew Acceleration using Tap Screw Tool 

6 3DForce_Awl Haptic Force applied using Awl Tool 

7 3DForce_Balltip Haptic Force applied using Ball Tip Tool 

8 3DForce_Pedifind Haptic Force applied using Pedicle Finder Tool 

9 3DForce_Scewdriv Haptic Force applied using Screwdriver Tool 

10 3DForce_Tapscrew Haptic Force applied using Tap Screw Tool 

11 3Dvelocity_Awl Velocity while using Awl Tool 

12 3Dvelocity_Balltip Velocity while using Ball Tip Tool 

13 3Dvelocity_Pedifind Velocity while using Pedicle Finder Tool 

14 3Dvelocity_Scewdriv Velocity while using Screwdriver Tool 

15 3Dvelocity_Tapscrew Velocity while using Tap Screw Tool 

16 AverageForceL4Vertebra_Awl Force applied on L4 vertebra voxels with Awl Tool 
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17 AverageForceL4Vertebra_Balltip 
Force applied on L4 vertebra voxels with Ball Tip 

Tool 

18 AverageForceL4Vertebra_Pedifind 
Force applied on L4 vertebra voxels with Pedicle 

Finder Tool 

19 AverageForceL4Vertebra_Scewdriv 
Force applied on L4 vertebra voxels with 

Screwdriver Tool 

20 AverageForceL4Vertebra_Tapscrew 
Force applied on L4 vertebra voxels with Tap 

Screw Tool 

21 AverageForceL5Vertebra_Awl 
Force applied on L5 vertebra voxels with Awl 

Tool 

22 AverageForceL5Vertebra_Balltip 
Force applied on L5 vertebra voxels with Ball Tip 

Tool 

23 AverageForceL5Vertebra_Pedifind 
Force applied on L5 vertebra voxels with Pedicle 

Finder Tool 

24 AverageForceL5Vertebra_Scewdriv 
Force applied on L5 vertebra voxels with 

Screwdriver Tool 

25 AverageForceL5Vertebra_Tapscrew 
Force applied on L5 vertebra voxels with Tap Screw 

Tool 

26 AvgContactrelTool_Awl 
Position of average contact point between tool 

and vertebra 

27 AvgContactrelTool_Balltip 
Position of average contact point between tool 

and vertebra 

28 AvgContactrelTool_Pedifind 
Position of average contact point between tool 

and vertebra 

29 AvgContactrelTool_Scewdriv 
Position of average contact point between tool 

and vertebra 

30 AvgContactrelTool_Tapscrew 
Position of average contact point between tool 

and vertebra 

31 ButtonPressed_Scewdriv Button pressed on Screwdriver Tool 

32 ButtonPressed_Tapscrew Button pressed on Tap Screw Tool 

33 ContactVoxelsL4Vertebra_Awl 
Number of L4 vertebra voxels in contact with Awl 

tool 

34 ContactVoxelsL4Vertebra_Balltip 
Number of L4 vertebra voxels in contact with Ball 

Tip Tool 

35 ContactVoxelsL4Vertebra_Pedifind 
Number of L4 vertebra voxels in contact with 

Pedicle Finder Tool 

36 ContactVoxelsL4Vertebra_Scewdriv 
Number of L4 vertebra voxels in contact with 

Screwdriver Tool 

37 ContactVoxelsL4Vertebra_Tapscrew 
Number of L4 vertebra voxels in contact with Tap 

Screw Tool 

38 ContactVoxelsL5Vertebra_Awl 
Number of L5 vertebra voxels in contact with Awl 

Tool 

39 ContactVoxelsL5Vertebra_Balltip 
Number of L5 vertebra voxels in contact with Ball 

Tip Tool 

40 ContactVoxelsL5Vertebra_Pedifind 
Number of L5 vertebra voxels in contact with 

Pedicle Finder Tool 

41 ContactVoxelsL5Vertebra_Scewdriv 
Number of L5 vertebra voxels in contact with 

Screwdriver Tool 
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42 ContactVoxelsL5Vertebra_Tapscrew 
Number of L5 vertebra voxels in contact with Tap 

Screw Tool 

43 CutVoxelsL4Vertebra_Awl 
Number of L4 vertebra voxels removed using Awl 

Tool 

44 CutVoxelsL4Vertebra_Pedifind 
Number of L4 vertebra voxels removed using 

Pedicle Finder Tool 

45 CutVoxelsL4Vertebra_Scewdriv 
Number of L4 vertebra voxels removed using 

Screwdriver Tool 

46 CutVoxelsL4Vertebra_Tapscrew 
Number of L4 vertebra voxels removed using Tap 

Screw Tool 

47 CutVoxelsL5Vertebra_Awl Number of L5 vertebra voxels removed using Awl 

48 CutVoxelsL5Vertebra_Pedifind 
Number of L5 vertebra voxels removed using 

Pedicle Finder Tool 

49 CutVoxelsL5Vertebra_Scewdriv 
Number of L5 vertebra voxels removed using 

Screwdriver Tool 

50 CutVoxelsL5Vertebra_Tapscrew 
Number of L5 vertebra voxels removed using Tap 

Screw Tool 

51 IsCutting_Awl If bone or soft tissue is being cut or removed 

52 IsCutting_Pedifind If bone or soft tissue is being cut or removed 

53 IsCutting_Scewdriv If bone or soft tissue is being cut or removed 

54 IsCutting_Balltip If bone or soft tissue is being cut or removed 

55 IsCutting_Tapscrew If bone or soft tissue is being cut or removed 

56 MaxForce_Awl Maximum Haptic Force applied using Awl Tool 

57 MaxForce_Balltip Maximum Haptic Force applied using Ball Tip Tool 

58 MaxForce_Pedifind 
Maximum Haptic Force applied using Pedicle 

Finder Tool 

59 MaxForce_Scewdriv 
Maximum Haptic Force applied using Screwdriver 

Tool 

60 MaxForce_Tapscrew 
Maximum Haptic Force applied using Tap Screw 

Tool 

61 ToolContact_Awl 
Awl Tool contact with vertebra. It returns binary 

output 

62 ToolContact_Balltip Ball Tip Tool contact with vertebra 

63 ToolContact_Pedifind Pedicle Finder Tool contact with patient 

64 ToolContact_Scewdriv Screwdriver Tool contact with vertebra 

65 ToolContact_Tapscrew Tap Screw Tool contact with vertebra 

Table 1:  List of 65 metrics including a description.  


