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Abstract. The advancement of available technology in use cause the produc-
tion of huge amounts of data which need to be categorised within an acceptable
time for end users and decision makers to be able to make use of the data
contents. Present unsupervised algorithms are not capable to process huge
amounts of generated data in a short time. This increases the challenges posed
by storing, analyzing, recognizing patterns, reducing the dimensionality and
processing Data. Self-Organizing Map (SOM) is a specialized clustering tech-
nique that has been used in a wide range of applications to solve different
problems. Unfortunately, it suffers from slow convergence and high steady-state
error. The work presented in this paper is based on the recently proposed
modified SOM technique introducing a Robust Adaptive learning approach to
the SOM (RA-SOM). RA-SOM helps to overcome many of the current draw-
backs of the conventional SOM and is able to efficiently outperform the SOM in
obtaining the winner neuron in a lower learning process time. To verify the
improved performance of the RA-SOM, it was compared against the perfor-
mance of other versions of the SOM algorithm, namely GF-SOM, PLSOM, and
PLSOM2. The test results proved that the RA-SOM algorithm outperformed the
conventional SOM and the other algorithms in terms of the convergence rate,
Quantization Error (QE), Topology Error (TE) preserving map using datasets of
different sizes. The results also showed that RA-SOM maintained an efficient
performance on all the different types of datasets used, while the other algo-
rithms a more inconsistent performance, which means that their performance
could be data type-related.
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1 Introduction

The Self-Organizing Map (SOM) is an unsupervised learning algorithm introduced by
Kohonen [1]. In the area of artificial neural networks, the SOM is an excellent data-
exploring tool as well [2, 3]. It can project high-dimensional patterns onto a low-
dimensional topology map. The SOM map consists of a one or two dimensional (2-D)
grid of nodes. These nodes are also called neurons. Each neuron’s weight vector has the
same dimension as the input vector. The SOM obtains a statistical feature of the input
data and is applied to a wide field of data classification [4–6]. SOM is based on
competitive learning.

In SOM prior knowledge of the target output is not required for the recognition of
process. This algorithm works by finding input features similarities within data objects
to define their relation by calculating the distance between them [15]. The nodes output
must map to the same weighed vector have been proposed by [7–9]. The winner output
is defined as the node with the shortest distance between that node and the input vector.
The weighted model continues to be updated to obtain the optimal cluster’s topology
[10]. The training time depends on dataset-size and the ability to find optimal weights
within an acceptable time.

A number of modified SOM versions are developed and proposed for the improve-
ment of vector quantization and the topology preservation performances [11–18].
Brugger et al., and Bogdan et al. proposed amethod for detecting clusters by applying the
different clustering algorithm to SOM [12, 19].

Berglund and Sitte [20, 21] proposed Parameter-Less SOM (PLSOM) and
Parameter-Less SOM2 (PLSOM2) to overcome limitations with Kohonen SOM.
PLSOM uses a Quadratic function for error fitting in place of the well-known neigh-
bourhood size and learning parameters, this method suffers from initial weight distri-
bution overreliance and oversensitivity to outliers. The PLSOM2 extended the work of
PLSOM by updating the weights by scaling them according to input range observed
instead of updating them based on the size of error relative to training maximum error.

In this paper, the performance of the RA-SOM algorithm, which employs a
decreasing adaptive learning rate function, is to be tested using a number of different
data types. The performance of the RA-SOM will then be compared against well-
known algorithms which will be tested using the same datasets. It is expected that the
RA-SOM will perform more efficiently than the other algorithms as it will require
lower implementation run times to achieve the desired convergence, provide a lower
Quantization Error QE, and maintain the topology of the clusters [22]. The test will be
carried out on a number of datasets obtained from UCI and KEEL repository.

The remainder of the paper is organized as follows: Sect. 2 reviews the conven-
tional SOM algorithm, Sect. 3 Reviews the RA-SOM algorithm, and Sect. 4 presents
the simulation results and a performance comparison between the RA-SOM and other
known algorithms including Kohonen SOM, PLSM, PLSOM2, and GF-SOM. The
conclusions and future work are presented in Sect. 5.
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2 SOM Algorithm

The SOM architecture is composed of input and output layers, connected by link-
associated weights. The SOM map uses neuron connections topologies of the hexag-
onal and rectangular form [15, 16]. SOM output layers contain n� m neurons arranged
as a two-dimensional grid. The original n-dimensional data are transferred to a two
dimensional map in SOM. In this case the input vector xi ¼ x1; x2; . . .; xnf g,
i ¼ 1; 2; . . .; n, where i is the number of input and n is the input units of the vector.
Each i is associated to the map through a weight vector w ¼ wn1;wn2; . . .;wnmf g.

SOM adapt a number of processes: First step, the n� m neuron weight vector is
initialized randomly, the second step, an input vector x from the dataset is fed into the
SOM network. Input vector x is fed to all neurons, at the same time. Third, the distance
between the input and output neurons are calculated, then the closest neuron to the
input identified (closest-distance) in this case using Euclidean Distance; this will be
called the Best Matching Unit (BMU). The wining neuron is denoted by c.

c ¼ argmin
i

wi tð Þ � x tð Þk kð Þ: ð1Þ

This process is iterated for entire input vectors in the dataset. In each iteration, the
weight vector is updated by the winning neuron by:

wi tþ 1ð Þ ¼ wi tð Þþ a tð Þ: x tð Þ � wi tð Þ½ �; ð2Þ

where a tð Þ is the learning rate. The GF-SOM algorithm utilizes a Gaussian-function
which is given by:

wi tþ 1ð Þ ¼ wi tð Þþ hc;i tð Þ: x tð Þ � wi tð Þ½ �; ð3Þ

where hc;i is the Gaussian neighborhood function given as

hc;i tð Þ ¼ a tð Þ:exp � rc � rik k
2r2 tð Þ

� �
; ð4Þ

where rc � rik k is the Euclidean distance between the positions of the winning neuron
c and the neuron i on the grid in each updated weight, and r tð Þ is the width of
Gaussian. a tð Þ ¼ da:a tð Þ and r tð Þ ¼ dr:r tð Þ are decreasing gradually during the
learning process by constants factors da and dr, respectively.

3 RA-SOM Algorithm

The conventional Kohonen SOM algorithm uses a fixed learning a which is usually
between 0–1. The choice of the learning rate affects the speed of the conversion and
accuracy of the optimum model. It is known that the higher the learning rate, the faster
the convergence. However, this will not guarantee the accuracy of the data topology
(clustering), as data accuracy will require a lower leaning rate. Therefore, choosing a
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high learning rate will provide a high initial convergence, but once this is achieved the
algorithm will be forced to diverge to a higher QE due to the inaccuracy in the data
topology. On the other hand, choosing a small value for the learning rate will cause a
slow divergence which will require many more iterations to achieve the required low
QE. This cannot be acceptable in the case of big data.

For this reason, the RA-SOM introduces an adaptive learning rate a tð Þ [22, 23]
which is of a decreasing form, it start by introducing a high learning rate a tð Þ, which is
decreased adaptively in subsequent iterations. The adaptively decreasing learning rate
achieves high convergence during the first few iterations, this will be followed by a
lower learning rate a tð Þ, which will guarantee the continuous high convergence, and
will help in defining the accuracy of the data clusters.

The new adaptive learning rate adapted in the RA-SOM is applied in this paper this
will be of the form given by

wi tþ 1ð Þ ¼ wi tð Þþ a tð Þ: x tð Þ � wi tð Þ½ �; t ¼ 0; 1; . . . ð5Þ

where wi tþ 1ð Þ is defined as the updating weights, and a tð Þ is a variable adaptive
learning convergence rate is defined as

a tð Þ ¼ k

1� bt
ð6Þ

As a result, substitute (6) in (5) deriving a new format of RA-SOM as

wi tþ 1ð Þ ¼ wi tð Þþ k

1� bt

� �
: x tð Þ � wi tð Þ½ �: ð7Þ

In the RA-SOM, the weight vector w is randomly initialized as a grid of n� m
neurons similar to the conventional SOM algorithm. Then, updating the weights is
controlled adaptively through the proposed learning algorithm. The optimal weights are
obtained in a shorter time compared to the conventional SOM, PLSOM and PLSOM2
algorithms. Moreover, the optimum weight vectors are also improved and provide
lower quantization error. The logic behind the adaptive learning function (6) is quite
simple: at the start of the function the value of b is large enough while the value of t is
small, hence the term 1� btð Þ will be relatively small, therefore a tð Þ will be relatively
large, which will result in faster convergence of the updated weights in (7). As time
t increases, the term 1� bt

� �
increases to a value close to unity, and hence a tð Þ will

then be close to or equal to k, which will result in low error performance in the updated
weights of (7).

4 Simulation Results

The proposed algorithm has been tested in four different applications to assess its
performance. In this paper, the methods were coded using MATLAB R2010b, and the
tests were performed using a Core (TM) i7-3612QM CPU (2.10 GHz) PC equipped
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with 8,00 GB of RAM with Windows 7 Ultimate operating system. This involved a
number of tests which were carried out on different datasets collected from UCI and
KEEL repository. Data were divided into 70% training and 30% testing sets. Datasets
used in this test were normalized using Min-Max normalization between 0 and 1.
A comprehensive comparison between (QE), topology error (TE), and run time was
carried out for all the test using all the different datasets. The algorithms tested during
the test are conventional Kohonen SOM, GF-SOM, PLSOM, and PLSOM2. The
results of these algorithms were then compared against the performance of the RA-
SOM under the same tests conditions.

4.1 Balance Dataset

This test was carried out using the Balance dataset. The Balance dataset consists of 625
instances with 4 attributes and 3 classes. The dataset was collected from UCI and
KEEL repository. This data set was generated to model psychological experimental
results. Each example is classified as having the balance scale tip to the right, tip to the
left, or be balanced. The attributes are the left weight, the left distance, the right weight,
and the right distance. The Kohonen map, in this case, consists of 4 neurons for the
input layer with a 2D grid of 4 � 3 neurons in the competitive layer. The experimental
results are reported in Tables 1, 2, 3, 4 and 5. They show that the RA-SOM outper-
forms all rest of algorithms, with the PLSOM being the second best.

It must be noted that the conventional SOM had the worst performance in this test.
The RA-SOM obtained the lowest QE using k ¼ 0:5� 10�2 and b ¼ 0:992; 0:991,
however in the following parameters the QE increased, but still was much lower than
the QE obtained by other algorithms as shown in Fig. 1. The test also shows that even
through RA-SOM outperformed all other algorithms during all subsequent algorithm
runs. From the result it can also be seen that the performance of the algorithms is
parameter-dependent, this was very clear when considering the performance of SOM,
GF-SOM and PLSOM2 algorithms, for example at parameter 1, PLSOM2 with
parameters (b ¼ 1:3; QE ¼ 0:222) outperformed both SOM with parameters (da ¼
0:17, and QE ¼ 0:24) and GF-SOM with parameters (da ¼ 1, and dr ¼ 0:85�
10�2; 0:87� 10�2, and QE ¼ 0:242), this later changed at parameter 3, PLSOM2
at (b ¼ 1:3; QE ¼ 0:243), SOM at parameters (da ¼ 0:15, and QE ¼ 0:24), and GF-
SOM at parameters (da ¼ 0:8, and dr ¼ 0:85� 10�2; 0:87� 10�2, and QE ¼ 0:24).

4.2 Dermatology Dataset

The test was carried out on the Dermatology dataset. The dataset was collected from
UCI and KEEL repository. The differential diagnosis of erythemato-squamous diseases
is a real problem in dermatology. The dataset consists of 366 instances, 33 attributes
and 6 classes namely (psoriasis, seborrheic dermatitis, lichen planus, pityriasis rosea,
chronic dermatitis and pityriasis rubrapilaris). The structure of the Kohonen map used
in this case consists of 33 neurons for the input layer and 2D grid size of 33 � 6
neurons in the competitive layer.
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The results of the test are provided in Tables 6, 7, 8, 9 and 10 for the conventional
SOM, GF-SOM, PLSOM, PLSOM2, and RA-SOM, respectively. Figure 2 shows the
relevant QE against the run time. From this result, it can be concluded that the RA-
SOM outperform all algorithms by obtaining lowest initial QE ¼ 0:174 with the fol-
lowing parameters (k ¼ 0:7� 10�2, and b ¼ 0:992), this was further improved to
obtain an optimal QE ¼ 0:173 at (k ¼ 0:5� 10�2, and b ¼ 0:99); these values
remained consistent in all subsequent runs. The result shows that the RA-SOM defined
a dataset cluster topology in early run times and managed to maintain this topology
throughout.

Table 1. QE results of the conventional
SOM algorithm for balance dataset

da 0.17 0.16 0.15
QE 0.24 0.25 0.24

Table 2. QE results of the GF-SOM
algorithm for balance dataset

dr da
1 0.9 0.8

0.0087 0.242 0.239 0.24
0.0086 0.242 0.24 0.24
0.0085 0.242 0.238 0.24

Table 3. QE results of the PLSOM
algorithm for balance dataset

B 4 3 2
QE 0.22 0.22 0.23

Table 4. QE results of the PLSOM2 algo-
rithm for balance dataset

B 1.5 1.4 1.3
QE 0.222 0.224 0.243

Table 5. QE results of the RA-SOM
algorithm for balance dataset

b k

0.005 0.004 0.003

0.992 0.2 0.21 0.2
0.991 0.2 0.21 0.216
0.99 0.22 0.22 0.2

Fig. 1. Comparison of QE measures with vari-
ous test parameters for balance dataset.
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However, the rest of the algorithms did not manage to maintain the topology, as
shown in Fig. 2. The PLSOM started at a high QE ¼ 0:188 in the first run at b ¼ 13:7;
this was reduced to QE ¼ 0:177 at the second run at b ¼ 13:6, and slightly improved
by the third run to QE ¼ 0:176 at b ¼ 13:5. No more improvement was obtained for
any further runs and variations of b. The PLSOM2 also started with a QE ¼ 0:182 at
b ¼ 7:5; this was further reduced to QE ¼ 0:175 at b ¼ 8; however, QE was increased
at the third run to QE ¼ 0:179 at b ¼ 8:5, which indicates that the algorithm had
difficulty to maintain the dataset cluster topology. The conventional SOM in this test
provided a lower initial QE ¼ 0:181 at da ¼ 0:6, which is better than the performance
of both PLSOM and PLSOM2. However, this was not maintained as both of the
algorithms performed much better at subsequent runs. The optimal QE for the con-
ventional SOM is QE ¼ 0:18 at da ¼ 0:4, which was the worse between all algorithms.
The GF-SOM started at QE ¼ 0:179 at da ¼ 0:6 and dr ¼ 0:4. This improved to an
optimum of QE ¼ 0:177 at da ¼ 0:4 and dr ¼ 0:02. The algorithm best QE was much

Table 6. QE results of the con-
ventional SOM algorithm for der-
matology dataset

da 0.6 0.5 0.4
QE 0.181 0.181 0.18

Table 7. QE results of the GF-SOM
algorithm for dermatology dataset

dr da
0.6 0.5 0.4

0.04 0.179 0.177 0.177
0.03 0.181 0.181 0.182
0.02 0. 18 0.18 0.177

Table 8. QE results of the PLSOM
algorithm for dermatology dataset

B 13.7 13.6 13.5
QE 0.188 0.177 0.176

Table 9. QE results of the PLSOM2
algorithm for dermatology dataset

B 8.5 8 7.5
QE 0.179 0.175 0.182

Fig. 2. Comparison of QE measures with
various test parameters for dermatology
dataset

Table 10. QE results of the RA-SOM
algorithm for dermatology dataset

b k

0.007 0.006 0.005

0.992 0.174 0.179 0.184
0.991 0.176 0.176 0.179
0.99 0.18 0.1732 0.173
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higher than the global best which was obtained by the RA-SOM which is QE ¼ 0:173.
However, from Fig. 2, it can be seen that the GF-SOM did not undergo too many
topology changes compared to the PLSOM and PLSOM2 algorithms.

4.3 Arcene Dataset

The dataset was collected from UCI and KEEL repository. ARCENE was obtained by
merging three mass-spectrometry datasets to obtain enough training and test data for a
benchmark. Another dataset we used to examine the efficiency and investigate the
performance of the RA-SOM algorithm against other algorithms was the Arcene
dataset. It consists of 100 instances, 10000 attributes and 2 classes. The structure of the
used Kohonen maps consists of 100 neurons for the input layer with a 2D grid of
100 � 2 neurons in the competitive layer.

The basic parameters used in this experiment are: for the conventional SOM
algorithm: da ¼ 0:5� 10�5, for the PLSOM2 algorithm, b ¼ 0:5� 10�5 and for the
proposed RA-SOM: k ¼ 0:5� 10�10, and b ¼ 0:8. The test results are provided in
Table 11. The number of iterations used in this test the same for all three algorithms
(SOM, PLSOM2, and RA-SOM). The test results show that RA-SOM outperformed
the other two algorithms by obtaining the lowest QE = 0.067, with an accuracy of
66.67%. The CPU time shows that the PLSOM2 was the worst, which is expected as
the algorithms require many more iterations to complete a cycle compared to both
Conventional SOM and RA-SOM, RA-SOM needed extra CPU time as more iterations
are needed to calculate the Adaptive learning rate compared to conventional SOM.

4.4 Gisette Dataset

The dataset was collected from UCI and KEEL repository. The digits have been size-
normalized and centered in a fixed-size image of dimension 28 � 28. The original data
were modified for the purpose of the feature selection challenge. The final dataset used
to examine the efficiency and investigate the performance of the proposed SOM
algorithm against other algorithms is the Gisette dataset. The Gisette dataset consists of
6000 instances, 5000 attributes and 2 classes. The structure of the used Kohonen maps
consists of 100 neurons for the input layer with a 2D grid of 100 � 2 neurons in the
competitive layer.

The basic parameters used in this experiment are: for the conventional SOM
algorithm: da ¼ 0:5� 10�7, for the PLSOM2 algorithm, b ¼ 0:5� 10�5 and for the
proposed SOM: k ¼ 0:5� 10�8, and b ¼ 0:9. The test results are provided in Table 12

Table 11. Performance comparison of the conventional SOM, GF-SOM, PLSOM, PLSOM2
and RA-SOM for Arcene dataset

Appendicitis dataset Accuracy (%) # iteration QE CPU time

Conventional SOM 60.00 100 0.0645 2.88
PLSOM2 60.00 100 0.0634 3.21
RA-SOM 66.67 100 0.0607 2.90
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below. The number of iterations used in this test the same for all three algorithms
(SOM, PLSOM2, and RA-SOM). The test results show that RA-SOM has outper-
formed the other two algorithms by obtaining the lowest QE = 0.0419, with an
accuracy of 60.44%. The CPU time shows that the PLSOM2 was again the worst. RA-
SOM needed extra CPU time as more iterations are needed to calculate the Adaptive
learning rate compared to conventional SOM.

5 Conclusion and Future Work

In this work, several alternative algorithms we tested to the proposed RA-SOM under
the same conditions. Results showed that the RA-SOM performed more efficiently than
the other algorithms in all the datasets tested. It was noticed that the RA-SOM not just
outperformed the other algorithms, but it also maintained the dataset variations. The
increase or reduction of the number of classes, instances and attributes had no effects
on the abilities of the RA-SOM to efficiently converge the QE end the algorithms
ability to maintain the dataset topology. It is well known that selecting suitable learning
parameters is key to obtain an optimum model with lower clustering topology error.
This is one of the main drawbacks in model estimation and bound to be even a bigger
issue in big data contexts, as selecting the optimum parameters one needs to run the
program many times and each run may be extremely time-consuming. RA-SOM offers
more flexibility to obtain the different selection of parameters and thus obtain relevant
optimum model quickly and more efficiently.
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