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OBJECTIVE: Assessment of physiological tremor during
neurosurgical procedures may provide further insights

into the composites of surgical expertise. Virtual reality

platforms may provide a mechanism for the quantitative

assessment of physiological tremor. In this study, a vir-

tual reality simulator providing haptic feedback was

used to study physiological tremor in a simulated tumor

resection task with participants from a “skilled” group

and a “novice” group.

DESIGN: The task involved using a virtual ultrasonic

aspirator to remove a series of virtual brain tumors with

different visual and tactile characteristics without caus-
ing injury to surrounding tissue. Power spectral density

analysis was employed to quantitate hand tremor during

tumor resection. Statistical t test was used to determine

tremor differences between the skilled and novice

groups obtained from the instrument tip x, y, z coordi-

nates, the instrument roll, pitch, yaw angles, and the

instrument haptic force applied during tumor resection.

SETTING: The study was conducted at the Neurosurgical

Simulation and Artificial Intelligence Learning Centre,

Montreal Neurological Institute and Hospital, McGill Uni-

versity, Montreal, Canada.

PARTICIPANTS: The skilled group comprised 23 neuro-

surgeons and senior residents and the novice group com-

prised 92 junior residents and medical students.
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RESULTS: The spectral analysis allowed quantitation of
physiological tremor during virtual reality tumor resec-

tion. The skilled group displayed smaller physiological

tremor than the novice group in all cases. In 3 out of 7

cases the difference was statistically significant.

CONCLUSIONS: The first investigation of the application

of a virtual reality platform is presented for the quantitation

of physiological tremor during a virtual reality tumor resec-

tion task. The goal of introducing such methodology to

assess tremor is to highlight its potential educational appli-

cation in neurosurgical resident training and in helping to

further define the psychomotor skill set of surgeons. ( J Surg
Ed 77:643�651. � 2019 Association of Program Directors

in Surgery. Published by Elsevier Inc. All rights reserved.)
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INTRODUCTION

Tremor is an unintentional, rhythmic muscle movement

involving oscillations (to-and-fro movements) of one or

more parts of the body and is most common in the hands.1

All individuals have physiological tremor which can be

influenced by different conditions including anxiety, stress,

medications, and alcohol.2 Therefore, this type of tremor

has the potential to affect psychomotor performance dur-

ing neurosurgical procedures. Assessment of physiological
hand tremor during neurosurgical procedures may provide

further insights into the armamentarium of the expert sur-

geon. Since conventional surgical setup and tools do not

allow one to make such assessment, virtual reality (VR) sim-

ulators could be used as a preliminary platform.
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Tremor assessment has been carried out using multiple

signal processing methods based on time domain analysis,

time-frequency analysis, and frequency analysis.3-7 Meth-

ods based on frequency analysis have been utilized in the
majority of such studies.3,5 VR simulators such as the Neu-

roTouch (now known as NeuroVR, CAE Healthcare, Mon-

treal, Canada) platform have created opportunities to

augment our understanding of the multiple psychomotor

skills involved in neurosurgical expertise.8-18

The goal of this study was to use a VR simulator for the

first time as a tool to assess tremor during tumor resec-

tion tasks and analyzing the results obtained from a
“skilled” group of neurosurgeons and senior residents,

and a “novice” group of junior residents and medical stu-

dents. We investigated whether the skilled participants

would display decreased physiological tremor in com-

parison with less skilled novice participants during VR

tumor resection tasks. The tremor was measured from

signals corresponding to instrument tip x, y, z coordi-

nates, the instrument roll, pitch, yaw angles, and the
instrument haptic force applied during tumor resection.
FIGURE 1. (A) The hand position of the operator holding the simulated
ultrasonic aspirator, (B) The 6 simulated tumor scenarios with tumor color
and sequence, and (C) Lateral view of the brain tumor geometry and ellip-
soidal shape utilized in each scenario with part of the tumor buried under-
neath simulated ''normal'' tissue.
METHODS

Study Population

A total of 115 subjects participated in the study, including

16 board certified and practicing neurosurgeons, from 3

institutions, and 7 senior residents postgraduate year

(PGY 4-6) who comprised the skilled group (total of 23

subjects) along with 8 junior residents (PGY 1-3) and 84

medical students from McGill University who comprised

the less skilled novice group (total of 92 subjects). Partici-

pants had no previous experience with the NeuroTouch
simulation platform. No financial or other compensation

was offered for participation in the study and all partici-

pants signed an approved McGill University Health Centre

consent form.

NeuroTouch

Tumor resections were performed using NeuroTouch

platform with haptic feedback utilizing the simulated

ultrasonic aspirator held in the dominant hand as shown

in Figure 1(A).12,16 The NeuroTouch VR simulator pro-

vided an adjustable armrest to stabilize hand position

during the procedure. The bar was adjusted to maintain

a 90˚ angle at elbow for all participants.

Simulation Scenarios

Participants were unaware of the study purpose and

were instructed to resect each tumor with minimal
removal of background tissue. Each of the 6 scenarios

utilized in this study included 3 ellipsoidal tumors with
644 Journa
either varying tactile or varying visual properties as

shown in Figure 1(B). Young’s modulus stiffness values
of 3 kPa, 9 kPa, and 15 kPa were used for “soft,”
l of Surgical Education � Volume 77/Number 3 � May/June 2020



“medium,” and “hard” tumors. Visually, tumors were

simulated with black, glioma-like appearance, or white

color. The background tissue, surrounding the tumor

was white with the same Young’s modulus as soft
tumors (3 kPa). The black tumor scenario simulated

malignant melanoma and was chosen to provide maxi-

mal color differential against the white “normal” tissue

background, while the white tumor was chosen to pro-

vide minimal color differential. The glioma-like tumor

provided an appearance similar to a glioma.12 The gli-

oma-like tumor was included in the study to also have a

tumor with vascularized structure, different from the
solid black and white appearance of the other 2 types of

tumors. Young’s modulus stiffness values of 3 kPa, 9

kPa, and 15 kPa were used for “soft,” “medium,” and

“hard” tumors. Young’s modulus values between 3 kPa

and 15 kPa were chosen based on measured mechanical

properties of multiple samples from 7 human brain

tumors immediately after removal at operation.16

The simulated operative procedure utilized for these
studies can be viewed in a previous publication.12 To

develop procedure familiarity operators resected a prac-

tice scenario but this data was not used. Three minutes

were allowed for each tumor removal with a 1-minute

rest time given between tumor resections to decrease

fatigue. The trial involved 54 minutes of active tumor

resection, 71 minutes in total. Figure 1(C) shows how a

typical scenario is viewed by the subject. The 2 images
on the auxiliary display are merged to provide a 3D

view. Figure 1(D) provides a lateral view of the 3 tumors

to visualize the 3D geometry of the tumors.

Applied Signals for Tremor Assessment

The NeuroTouch platform provides the capability to

record various signals from the simulated ultrasonic aspi-

rator during a tumor resection including instrument tip

coordinates, i.e., x, y, and z, instrument orientation, i.e.,

roll, pitch, and yaw, and the simulated contact force

between the virtual aspirator and the virtual tissues ver-
sus time.

Tremor Assessment Methods

Tremor in this study was considered as any involuntary,
approximately rhythmic, and roughly sinusoidal move-

ment of the simulated aspirator.19 Therefore, signal proc-

essing methods based on time domain analysis, time-

frequency analysis, and frequency analysis can be uti-

lized for tremor assessment with frequency analysis

being the most commonly employed.3-7 Frequency anal-

ysis can be performed to specify the predominant

tremor frequency by computing the power spectral den-
sity of the signal. This method has been previously used

for tremor detection and to diagnose different disorders
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such as Parkinson’s disease.2,19-21 Physiological hand

tremor lies in the band of 8 to 12 Hz, whereas voluntary

movement would appear at lower frequencies.7,22-24

Therefore, all our assessments have been performed
within the 8 to 12 Hz bandwidth to capture the physio-

logical hand tremor signal during the tumor resections

studied. Since surgical instrument movements can either

be translational or rotational, we have analyzed linear as

well as angular acceleration signals to measure linear

and rotational tremor, respectively.20 In addition, analy-

sis of force data enabled the investigation of the intrao-

perative effect of tremor on instrument manipulation
during the procedures.23

The oscillation was considered as the sum of sinusoi-

dal motions, each of which was specified independently

by a frequency and an amplitude.25 Welch’s power spec-

tral density estimate was used to assess tremor.26 Welch

method is performed by splitting the original signal into

successive sequences, and averaging squared magnitude

Discrete Fourier Transform of the signal sequences.
Assuming that xm is the m-th sequence of the signal x,

and k is the sequence number, then the Power spectral

density (PSD) estimate, bRxðkÞ is given by:27

bRx kð Þ ¼ 1

M

XM�1

m¼0

����DFTk xmð Þ
����
2

The amplitude of physiological hand tremor is defined

as the amplitude of power spectral density in the 8 to 12

range which means larger power corresponds to higher

tremor.28 Therefore, we computed amplitude of PSD in

8 to 12 Hz band for the signal of interest.

Statistical Analysis of Group Tremors

The means of tremor amplitude for the skilled and nov-

ice group were obtained from the power spectral den-

sity method and were compared using 2-tailed t test

(alpha = 0.05) for each tumor type. The differences were

considered significant for p values smaller than 0.05.

Mean scores and standard error of mean for the skilled

and the novice groups were used for comparison.
RESULTS

The results are provided for the skilled and novice

groups during the resection of the 3 tactile subgroups,

hard (H), medium (M), and soft (S) tumors along with

the 3 visual subgroups, black (B), glioma-like (G), and

white (W) tumors.

Figure 2(A) presents an example comparison of trajec-

tories for tumor removal by an expert and a novice.
The tool tip trajectory starts from a START button in the

upper left side. The trajectory passes through the
0 645



(A)

(B)

(C)

FIGURE 2. (A) Example of skilled and novice tool tip trajectories with
oscillations evident in the novice trajectory, (B) Tool tip x coordinate of the
skilled and novice trajectories for a magnified 40 to 60 second range with
oscillations evident for the novice, and (C) Power spectral densities (PSD) o
acceleration in the direction of the x axis for the skilled and novice partici
pants in the 8 to 12 Hz bandwidth with PSD levels higher for the novice.
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circular tumor region and ends at a STOP button in the

upper right side. Considering the dense segment of the

trajectory corresponding to motions of the tool tip in the

tumor regions, it is difficult to compare tremor in this
figure, while oscillations are evident in the novice tool

maneuvers.

Figure 2(B) presents a magnified sample time interval

of the x coordinate for these trajectories between 40 sec-

onds and 60 seconds for both operators resecting the

same tumor. As this figure shows there are more high fre-

quency fluctuations in the signal obtained from novice in

comparison to the one obtained from the skilled partici-
pant. These high frequency components can be quanti-

fied using PSD.

Figure 2(C) presents the PSD obtained from the skilled

and novice participants demonstrating the differences

seen in the 8 to 12 Hz range consistent with smaller

physiological tremor in the skilled individual while oper-

ating. Sum of PSD in this frequency range could be con-

sidered as a measure of tremor, used in the subsequent
analysis.

Group Analysis

Figure 3(A-C) demonstrates the spectral analysis of transla-

tional tremor in the x, y, and z directions for the 2 groups

in each of the 6 tumor subgroups. Each subgroup, e.g., soft

tumors, was analyzed across all scenarios. For example, for
soft tumors we incorporated the results from all soft

tumors, i.e., 6 soft tumors, including 1 tumor from each of

the Scenarios 1, 2, 3, and 3 tumors from Scenario 4. The

intensity level of tremor in the skilled group was less than

that seen in the novice group for all coordinates but the dif-

ferences were not statistically significant.

Figure 4(A-C) outlines the rotational tremor, in the

roll, pitch, and yaw directions which show less tremor
for the skilled group in comparison to the novice group.

These differences were statistically significant for the

roll and pitch directions. Table 1 and Table 2 provide sta-

tistical results for these directions.

Figure 5 demonstrates the results for the force signal ana-

lyzed for the 6 tumor subgroups. As Table 3 presents, the

sum of power spectral density for force was significantly

lower for the skilled group for all tumor subtypes studied.
DISCUSSION

The aim of this study is to introduce VR simulators as

potential tools to assess tremor in neurosurgery.

Physiological tremor has not previously been used to

differentiate skilled and novice groups performing VR

tumor resection. The scenarios utilized in this study
involved aspirator skills used in human tumor resections

which are part of the surgical skill set of neurosurgeons
l of Surgical Education � Volume 77/Number 3 � May/June 2020



(A) x coordinate

(B) y coordinate

(C) z coordinate

FIGURE 3. Sum of power spectral density (PSD) estimation of means §
SEM of linear acceleration for skilled (n = 23) and novice (n = 92) groups
during the removal of 6 simulated tumor subgroups, obtained from (A) x,
(B) y, and (C) z coordinates. SEM, standard error of mean.

(A) Roll

(B) Pitch

(C) Yaw

FIGURE 4. Sum of power spectral density (PSD) estimation of means
§ SEM of angular acceleration for skilled (n = 23) and novice (n = 92)
groups during the removal of 6 simulated tumor subgroups, obtained
from (A) roll, (B) pitch, and (C) yaw signals. SEM, standard error of
mean.
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TABLE 1. t Test Results Based on the PSD Approach Applied to Roll Signal for 6 Simulated Tumor Subgroups: Hard Tumors, Medium
Tumors, Soft Tumors, Black Tumors, Glioma Tumors, andWhite Tumors

Tumor Subgroup Group Mean § SEM p Value

Hard Skilled (n = 23) 0.00068 § 0.00129 0.005
Novice (n = 92) 0.01425 § 0.00124

Medium Skilled (n = 23) 0.00853 § 0.00146 0.01
Novice (n = 92) 0.01513 § 0.00117

Soft Skilled (n = 23) 0.00963 § 0.00162 0.01
Novice (n = 92) 0.01735 § 0.00148

Black Skilled (n = 23) 0.00696 § 0.00120 0.004
Novice (n = 92) 0.01544 § 0.00139

Glioma Skilled (n = 23) 0.00836 § 0.00135 0.01
Novice (n = 92) 0.01507 § 0.00120

White Skilled (n = 23) 0.00968 § 0.00165 0.02
Novice (n = 92) 0.01622 § 0.00132

SEM, standard error of mean.
and senior residents, but not yet acquired by all junior

residents and medical students. We defined a skilled and

a novice (less skilled) group based on the required tech-
nical skill set needed for the specific scenarios

assessed.3,29

As shown in the results, the skilled group showed less

tremor than the novice group in all cases. The difference

between the PSD sums was statistically significant in 3

out of 7 signals. It is important to mention that the cur-

rent study is more of an exploratory rather than a confir-

matory study. From an expert performance viewpoint,
we do not yet know whether experts have less tremor

during surgery, and if they do is it less in all x, y, z, roll,

pitch, yaw, and force signals or only for some of them.

This study explored the tremor difference in these sig-

nals under the conditions of the simulated scenarios.

Whether we could confirm the hypothesis that experts
TABLE 2. t Test Results Based on the PSD Approach Applied to Pitch
Tumors, Soft Tumors, Black Tumors, Glioma Tumors, andWhite Tumors

Tumor Subgroup Group

Hard Skilled (n = 23)
Novice (n = 92)

Medium Skilled (n = 23)
Novice (n = 92)

Soft Skilled (n = 23)
Novice (n = 92)

Black Skilled (n = 23)
Novice (n = 92)

Glioma Skilled (n = 23)
Novice (n = 92)

White Skilled (n = 23)
Novice (n = 92)

SEM, standard error of mean.

648 Journa
always and in all these signals have less tremor could be

investigated more rigorously in the future:

1) From a hardware viewpoint, progress in the haptic

technology could make tremor analysis more precise.

2) From a software viewpoint, improving the graphics

and the mechanical models used for virtual tissues
and tool-tissue interaction could improve the preci-

sion of tremor analysis.

3) Recruiting a large number of neurosurgeons for such

studies is generally difficult. We had the opportunity to

recruit 16 board certified and practicing neurosurgeons,

who were from 3 institutions with different areas of

expertise. These participants are felt to represent a
Signal for 6 Simulated Tumor Subgroups: Hard Tumors, Medium

Mean § SEM p Value

0.00394 § 0.00074 0.002
0.01196 § 0.00127
0.00446 § 0.00064 0.001
0.01291 § 0.00122
0.00536 § 0.00084 0.001
0.01386 § 0.00123
0.00396 § 0.00059 0.001
0.01222 § 0.00117
0.00445 § 0.00064 0.001
0.01286 § 0.00124
0.00534 § 0.00095 0.002
0.01366 § 0.00130

l of Surgical Education � Volume 77/Number 3 � May/June 2020



FIGURE 5. Sum of power spectral density (PSD) estimation of means §
SEM of force signal for skilled (n = 23) and novice (n = 92) groups during
the removal of 6 simulated tumor subgroups. SEM, standard error of mean.
general neurosurgical population. Although having this

number of neurosurgeons in similar studies is not usual,

from a statistical analysis point of view a larger number

of participants is desirable.

4) Simulation scenarios could be enriched. Patient

tumor resections involve bimanual psychomotor

skills with different instruments. Previous investiga-

tions have also demonstrated differences in ergonom-

ics between right and left handed operators and this

issue was not addressed in this study.13 Multiple fac-

tors, including stress, fatigue, medications, and alco-
hol influence physiological tremor.2 More realistic

tumor scenarios with stressful simulated bleeding

involving use of bimanual instruments in different

tumor regions are being assessed. These studies may
TABLE 3. t Test Results Based on the PSD Approach Applied to Force
Tumors, Soft Tumors, Black Tumors, Glioma Tumors, andWhite

Tumor Subgroup Group

Hard Skilled (n = 23)
Novice (n = 92)

Medium Skilled (n = 23)
Novice (n = 92)

Soft Skilled (n = 23)
Novice (n = 92)

Black Skilled (n = 23)
Novice (n = 92)

Glioma Skilled (n = 23)
Novice (n = 92)

White Skilled (n = 23)
Novice (n = 92)

SEM, standard error of mean.
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further define the influence of operative stress, hand

ergonomics, and specific tumor features on tremor.

Operative stress induced by simulated blood loss has

significantly less detrimental impact on neuro-
surgeon’s bimanual performance than that of resident

groups.14 The reasons the skilled group demonstrated

decreased physiological tremor in our investigations

may be related to their increased confidence in carry-

ing out operative procedures with an ultrasonic aspi-

rator which decreased their level of stress. This

concept is supported by other studies in which physi-

ological tremor was assessed during the suturing of
silicone vessel replicas.23,24 The scenarios defined in

this study, were not designed to challenge the sub-

jects in terms of the extent of tumor resection. There-

fore, participants were able to resect the tumors to

large extents which did not correlate with the tremor.

Future work could study tremor in scenarios where

the tumor resection task is more challenging, for

example in presence of bleeding, where the scene
could be filled up with blood, blocking the view for

tumor resection. Our group has proposed a perfor-

mance model for VR tumor resections encompassing

human and task factors which are integrated into

hand ergonomics resulting in safe and efficient proce-

dures.29 The present study suggests that decreasing

physiological tremor may also be a component of the

skill set of the expert neurosurgeon and needs to be
incorporated into this model.

The focus of this paper was more on the investigation

of tremor from an expert-novice point of view. The

tremor could also be investigated from the tumor sub-

group viewpoint. We did not observe trends that are con-
sistent for both linear (x, y, and z) and angular (roll,

pitch, and yaw) directions. We do observe a decreasing
Signal for 6 Simulated Tumor Subgroups: Hard Tumors, Medium

Mean § SEM p Value

0.00033 § 0.00002 0.01
0.00076 § 0.00003
0.00027 § 0.00003 0.004
0.00072 § 0.00008
0.00026 § 0.00004 0.02
0.00058 § 0.00006
0.00035 § 0.00006 0.02
0.00081 § 0.00008
0.00024 § 0.00004 0.005
0.00060 § 0.00006
0.00009 § 0.00003 0.01
0.00021 § 0.00007
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trend from hard to medium to soft subgroups for force.

Whether visual properties of tumors could affect tremor

could be investigated further in future studies. Tactile

properties could be related to the amount of effort, e.g.,
force, needed for tumor resection. Harder tumors require

higher force amplitudes and this could increase tremors

related to force, consistent with what has been observed.
CONCLUSION

We presented the first investigation of the application of

a VR platform for the quantitation of physiological

tremor during a tumor resection task. The importance of
the proposed methodology lies in its potential educa-

tional application in resident training and helping to fur-

ther define the psychomotor technical skills of the

expert surgeon. In addition, the ability to measure physi-

ological tremor, which we all possess, in a VR simulator

may be particularly useful in surgical specialties which

involve microsurgical techniques.
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