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Abstract
This study outlines the first investigation of application of machine learning to distinguish “skilled” and “novice” psychomotor
performance during a virtual reality (VR) brain tumor resection task. Tumor resection task participants included 23 neurosur-
geons and senior neurosurgery residents as the “skilled” group and 92 junior neurosurgery residents and medical students as the
“novice” group. The task involved removing a series of virtual brain tumors without causing injury to surrounding tissue.
Originally, 150 features were extracted followed by statistical and forward feature selection. The selected features were provided
to 4 classifiers, namely, K-Nearest Neighbors, Parzen Window, Support Vector Machine, and Fuzzy K-Nearest Neighbors. Sets
of 5 to 30 selected features were provided to the classifiers. Aworking point of 15 premium features resulted in accuracy values as
high as 90% using the Supprt Vector Machine. The obtained results highlight the potentials of machine learning, applied to VR
simulation data, to help realign the traditional apprenticeship educational paradigm to a more objective model, based on proven
performance standards.

Keywords Virtual reality simulation . Machine learning . Classifiers . Neurosurgery skill education and assessment . Tumor
resection

1 Introduction

Virtual reality (VR) simulators have been proposed as tools to
understand, assess, and train neurosurgery residents [1–5]. An
important element of simulator performance is the capacity of
simulators to distinguish operator expertise. Most studies on
operator performance have utilized “metrics.” [6–16] Metrics
could be defined as standards of reference by which perfor-
mance, efficiency, and progress can be assessed. Individual
metrics can be used to assess aspects of operator performance.
Tool acceleration [17], applied forces [9, 18–22], bimanual

dexterity [15, 22–24], and effect of stress [24] have all been
studied. An operator’s performance metrics can be compared
with previously defined proficiency benchmarks. The opera-
tor could then be placed into 1 of 2 or more groups with
specific levels of psychomotor expertise [25, 26]. These arti-
cles have applied statistical analysis to various metrics.
Statistical analysis has usually been used to determine the
quality of individual metrics. Using metrics individually, as
practiced so far, to differentiate performance in a unidimen-
sional feature space may not provide adequate distinction.
Neurosurgical tasks are complicated, involving multiple cog-
nitive processes and psychomotor skills, and larger sets of
metrics or features may be required in combination to differ-
entiate groups in a multidimensional space.

Machine learning algorithms have the capacity to use ex-
tensive datasets involving numbers of features to separate
groups [27–31]. Machine learning applications have been
reviewed in neurosurgery [29]. Supervised learning has been
employed in neurosurgical diagnosis, presurgical planning,
and outcome prediction. Machine learning has been used to
characterize performance during otolaryngology and dental
VR procedures [32–37]. In these studies, participants ranged
from 1 to 7 skilled (experts) and 5 to 40 novice (less skilled).
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The focus of this study was on using machine learning to
investigate the construct validity of the simulator, which is the
ability of the simulator to differentiate between expert and
novice performances. We sought to answer the question: to
what extent and with what accuracy can the simulators distin-
guish between experts and novices using classifiers? This
could be done with black box classifiers and large number
of features that are not necessarily interpretable to humans.
Considering the defined scope, we did not choose classifiers
based on interpretability. Rather, we chose simple and widely
used classifiers and excluded neural network–based classifiers
because of data limitation.

To our knowledge, machine learning has not been used in
the context of VR simulation of neurosurgery and neurosur-
gery education. More specifically, it has not been utilized to
differentiate “skilled” and “novice” neurosurgical psychomo-
tor performance using a VR simulator. Neurosurgery resident
training could be modernized accordingly, once clinical rele-
vance of applying VR simulators together with machine learn-
ing has been established. Human behavior is complex, and it
could be understood using complex methods. A motivating
factor for the current study is that it could pave the way to-
wards application of powerful deep learning and feature learn-
ing methods. Upon availability of large datasets, this goal
could be realized. Another important issue is that studies like
the current study are exploratory studies, i.e., exploring met-
rics and understanding them, rather than confirmatory studies,
i.e., confirming hypotheses. Feature extraction, selection, and
machine learning classifiers are helpful tools to achieve these
exploratory objectives.

In this study, a virtual reality tumor resection task was used.
The task was defined as removing the virtual tumor without
removing the surrounding healthy tissue. The participants
were divided into 2 groups, namely, the “skilled” group com-
prising staff neurosurgeons and senior neurosurgery residents,
and the “novice” group comprising junior neurosurgery resi-
dents and medical students. NeuroVR (CAE Healthcare,
Montreal, Canada) was used to simulate the tumor resection
scenarios. In simulation scenarios, a simulated ultrasonic as-
pirator was used as the tool to remove tumors. The aspirator
was activated using a foot pedal. The simulator recorded raw
data, such as tool tip coordinates, tool tip orientation, haptic
forces, and foot pedal status versus time. At the end of the
procedure, the simulator also provided the volume of tumor
removed as well as the volume of the surrounding healthy
tissue removed.

After the trial, the data was postprocessed for all groups to
extract features that could relate operation dexterity, e.g.,
speed, and operation safety, e.g., maximum force applied.
These features were used in machine learning algorithms to
investigate to what degree the 2 groups could be differentiated
by classifiers.Many classifiers could have been chosen. In this
research, considering that no reference study existed, the goal

was to obtain an estimate on the order of performance mea-
sures of various classifiers for such application rather than
finding the best classifier. In this preliminary study, we used
4 classifiers as examples, namely, K-Nearest Neighbors,
Parzen Window, Support Vector Machine, and Fuzzy K-
Nearest Neighbors to distinguish skill levels.

2 Methods

2.1 Subjects

For the VR tumor resection task, 115 individuals including 16
board certified practicing neurosurgeons from 3 institutions
and 7 senior residents (PGY 4–6) from one university made
up the skilled group (n = 23). Eight junior residents (PGY 1–
3) and 84medical students made up the novice group (n = 92).
No participant had had previous experience with the simulator
utilized, and participants signed an approved Research Ethics
Board consent.

2.2 NeuroVR

The NeuroTouch, now known as NeuroVR (CAE Healthcare,
Montreal, Canada), VR simulation platform was used [5].
Tumor resections were performed using the simulated ultra-
sonic aspirator held in the dominant hand as shown in Fig. 1a.

2.3 Simulation scenarios

Figure 1 b outlines the 6 scenarios used in this study. Each one
of Scenarios 1–3 included 3 tumors with the same visual
properties but different tactile properties (“Soft”: Young’s
modulus of 3 kPa, “Medium”: Young’s modulus of 9 kPa,
and “Hard”: Young’s modulus of 15 kPa). Each one of
Scenarios 4–6 included 3 tumors with the same tactile prop-
erties but different visual properties (black, glioma-like, and
white). Therefore, all tumors in Scenarios 1–3 appeared for a
second time in a different order in Scenarios 4–6, and a total of
18 tumors were resected. The background that simulated sur-
rounding healthy tissue had the same tactile property as the
soft tumor and the same visual property as the white tumor. In
each scenario, the participant was instructed to remove the top
tumor first, followed by the left and right tumor. Figure 1 c
shows the 3D geometry of the tumors from a side view. A 3-
min period was allowed for each tumors removal with a 1-min
rest time given between tumor resections to decrease fatigue.
The trial involved 54 min of active tumor resection, 71 min in
total. To develop procedure familiarity, operators resected a
practice scenario but this data was not used. Participants were
unaware of study purpose or metrics utilized and were
instructed to resect each tumor with minimal removal of the
background tissue.
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2.4 Process steps

The processing steps, including feature extraction, statistical
feature selection, forward feature selection, and classification,
are shown in Fig. 2. In feature extraction step, various features
were obtained from the raw data, e.g. tool tip coordinates,
provided by the simulator. In statistical feature selection step,
the features that differentiated the skilled and novice groups
with statistical significance were selected. Next, forward fea-
ture selection algorithm was used to select premium features
to be provided to the classifiers.

2.5 Feature extraction

The simulator recorded signals including tool tip coordinates,
tool tip orientation angles, contact force between virtual tool
and virtual tissue, and foot pedal state versus time. The list of
all signal features is included in Table 1. Based on our inves-
tigation, the raw data was clean and was not affected by noise.

Preprocessing included using B-splines to smooth the signals
for differentiation. Different parametric features could be ex-
tracted from signal features with the goal to differentiate the
skilled and novice groups [38].

2.5.1 Motion-based features

To obtain motion-based parametric features, first, signals such
as velocity (first derivative), acceleration (second derivative),
and jerk (third derivative) for position and angle signals were
obtained. Then, based on signal features, parametric temporal
and spatial features were extracted.

Velocity Velocity was computed as the first derivative of
motion profile and then speed was considered as the mag-
nitude of the velocity profile. Features based on the speed
values included mean speed, maximum speed, number of
local maximum in the velocity vector and movement arrest
period ratio [39].

Acceleration Acceleration was computed as the second deriv-
ative of the motion profile. Features based on the acceleration
signal included mean acceleration, maximum acceleration,
and the integral of the acceleration vector (IAV) [40], as given
by the following:

IAV ¼ ∫T0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2x

dt2

� �2

þ d2y

dt2

� �2

þ d2z

dt2

� �2
s

dt ð1Þ

where x, y, and z are Cartesian coordinates and T is the task
completion time.

Jerk Jerk is defined as the third derivative of motion profile
applied for motor skill assessment. A normalized three dimen-
sional jerk [40] metric is used in this study, given by theFig. 2 Process steps

Fig. 1 The hand position of the operator holding the simulated ultrasonic
aspirator (a), the 6 simulated tumor scenarios with tumor color and
sequence (b), and lateral view of the brain tumor geometry and

ellipsoidal shape utilized in each scenario demonstrating the three
identical tumors, tumor buried underneath simulated “normal’ tissue
and the R1, R2, and R3 regions studied (c)
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following:

Jerknorm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 5

2A2
m

∫T0
d3x

dt3

� �2

þ d3y

dt3

� �2

þ d3z

dt3

� �2
s

dt ð2Þ

where T is the task completion time and Am is the amplitude of
the motion.

2.5.2 Force-based features

During neurosurgery, tool tip forces on tissue cannot be mea-
sured. Not being able to measure forces has limited our un-
derstanding of the forces that the human brain is exposed to by
this instrument. The VR simulator used had the ability to
simulate tool-tissue forces. This data has been utilized to cre-
ate force pyramids and force heat maps to assess psychomotor
function, automaticity, and force fingerprints for VR tumor
resections [9, 18, 19, 21]. Force-based features extracted in
this study comprise force derivatives, integral of the force, the
range of the applied forces, and the interquartile range, i.e., the
first quartile subtracted from the third quartile. In addition to
the abovementioned force-based features, parametric features
including temporal and spatial features were also extracted
from the force signal and its derivatives. We also used the 2
features proposed previously to indicate consistency [41], giv-
en by following:

df metric ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T

2 f 2iqr
∫T0

df
dt

� �2

dt

vuut ð3Þ

d2 f metric ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T3

2 f 2iqr
∫T0

d2 f

dt2

� �2

dt

vuut ð4Þ

and one feature to indicate the smoothness of the force appli-
cation [ 41], given by the following:

d3 f metric ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T5

2 f 2iqr
∫T0

d3 f

dt3

� �2

dt

vuut : ð5Þ

where T is the task completion time and fiqr is the interquartile
range of the force profile.

We initially extracted 150 parametric features, many of
which were eliminated in the subsequent feature selection
process.

2.6 Feature normalization

Since the parametric feature values are not in the same
order of size for comparison and to train classifiers, the
obtained features were normalized. Considering that min-
max and z-score normalization have been shown in the
literature to be sensitive to outliers [42], we used an expo-
nential normalization using:

Zi ¼ e−
xi

max xð Þ ð6Þ

where Zi is the normalized value and xi is a data point
(x1,x2,…,xn).

Table 1 List of signal features

x(t):position in the x-direction jz tð Þ ¼ daz tð Þ
dt : jerk in the z-direction

y(t):position in the y-direction j f tð Þ ¼ da f tð Þ
dt : third derivative of force signal

z(t):position in the z-direction roll(t): rotation around the front-to-back axis

f(t): force vroll tð Þ ¼ droll tð Þ
dt : first derivative of roll signal

vx tð Þ ¼ dx tð Þ
dt : velocity in the x-direction aroll tð Þ ¼ dvroll tð Þ

dt : second derivative of roll signal

vy tð Þ ¼ dy tð Þ
dt : velocity in the y-direction jroll tð Þ ¼ daroll tð Þ

dt : third derivative of roll signal

vz tð Þ ¼ dz tð Þ
dt : velocity in the z-direction pitch(t): rotation around the side-to-side axis

v f tð Þ ¼ df tð Þ
dt : first derivative of the force signal vpitch tð Þ ¼ dpitch tð Þ

dt : first derivative of pitch signal

V tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx
dt
2 þ dy

dt
2 þ dz

dt
2

q
: magnitude of velocity apitch tð Þ ¼ dvpitch tð Þ

dt : second derivative of pitch signal

ax tð Þ ¼ dvx tð Þ
dt : acceleration in the x-direction jpitch tð Þ ¼ dapitch tð Þ

dt : third derivative of pitch signal

ay tð Þ ¼ dvy tð Þ
dt : acceleration in the y-direction yaw(t): rotation around the vertical axis

az tð Þ ¼ dvz tð Þ
dt : acceleration in the z-direction vyaw tð Þ ¼ dyaw tð Þ

dt : first derivative of yaw signal

af tð Þ ¼ dv f tð Þ
dt : second derivative of force signal ayaw tð Þ ¼ dvyaw tð Þ

dt : second derivative of yaw signal

jx tð Þ ¼ dax tð Þ
dt : jerk in the x-direction jyaw tð Þ ¼ dayaw tð Þ

dt : third derivative of yaw signal

jy tð Þ ¼ day tð Þ
dt : jerk in the y-direction
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2.7 Feature selection

Feature selection followed feature extraction to reduce
computational complexity while maintaining classifier per-
formance [43]. Irrelevant features were identified and only
useful ones were provided to classifiers [44]. Feature se-
lection was carried out in 2 steps; considering that we
started with a large number (n = 150) of features, in the
first step of feature selection, we used statistical t test as
a filter-based approach, which was fast with better compu-
tational complexity in order to select features that defined
statistical differentiation. In the second step, we used for-
ward feature selection as a wrapper-based approach in or-
der to select the premium features that improved classifier
performance [45].

2.7.1 Statistical feature selection

For each feature, a t test was applied, following the
D’Agostino & Pearson test method to confirm normality
of distributions, and the resultant p values were compared
for all features as a measure of the usefulness of each in-
dividual feature to separate novice and skilled groups.
Among the extracted preliminary features, 68 features
were able to differentiate the 2 groups with a statistically
significant difference were p < 0.05 as provided in Table 2.

2.7.2 Forward feature selection

To find the most relevant features, forward feature selection,
backward feature selection, and the genetic algorithm were
applied. Based on our assessment, the error obtained from
forward feature selection was 2–20% smaller than that obtain-
ed from backward feature selection and 2–12% smaller than
that obtained from the genetic algorithm for different scenar-
ios. Therefore, we continued the process with the results ob-
tained from forward feature selection only. This algorithm
starts with an empty set and adds features one by one outlining
the best feature set of particular size [44]. This algorithm was
applied to rank the best 5, 10, 15, 20, 25, and 30 features from
the 68 features previously selected utilizing the t test. In the
feature selection, minimum of estimated Mahalanobis dis-
tances were used, and feature selection was done independent-
ly and irrespective of the subsequent classifiers to be used in
the subsequent stage.

2.8 Classification

The goal of this study is to provide an estimate of classifier
performance measures for such application. Four classifiers,
namely, K-Nearest Neighbors (KNN), Parzen Window (PW),
Support Vector Machine (SVM), and Fuzzy K-Nearest
Neighbors (FKNN), were applied to classify skilled and

Table 2 List of 68 selected parametric features that provide the best
classification. The best 30 features are marked by one asterisk (*) and the
best 15 features by two asterisks (**)

1 ∑t(jx ≤ 0)/T T: task completion time

2 ∑N(f > 0.1)
3* std( f )/std(vx) std: standard deviation

4 (max(vx) −min(vx)) ∗ (max(vy) −min(vy)) ∗ (max(vz) −min(vz))

5 iqr( f )

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T 3

2 iqr fð Þð Þ2 ∑af
2

q

7 (∑N−1
i¼1 f iþ1− f i

�� ��Þ=T
8** (∑N−1

i¼1 viþ1−vij jÞ=T std fð Þð Þ std: standard deviation
9** (∑t(max(ax)))/T

10* Nzero − cross(vx)

11* (∑t(min(ay)))/T

12 (∑t(max(az)))/T

13 Nextermum(Pitch)

14* (∑t(min(af)))/T

15 mean(V)

16* std( f )/std(vz) std: standard deviation

17** ∑flow frequency/ ∑fhigh frequency

18 (∑t(max(z)))/T

19 Nextermum(vf)

20** Nminimum(ax)

21 Nminimum(ay)

22 Nmax(x) +Nmax(y) +Nmax(z)

23** Nextermum(x)

24 Nextermum(z)

25 (∑N−1
i¼1 pitchiþ1−pitchi

�� ��Þ=T
26 (∑N−1

i¼1 vrolliþ1−vrollij jÞ=T
27* mean(roll) ∗ T/(max(vroll) −min(vroll))

28 Nmin(yaw) +Nmin(pitch) +Nmin(roll)

29 Nextermum(pitch)

30 Nextermum(vyaw)

31** Nextermum(vroll)

32* ∑t(max(pitch)) − ∑ t( min(pitch)/T

33 Frequency of pedal activation

34 ∑
R3

f R3 as defined in Fig. 1c

35* Nextermum( f )

36* ∑
R4

f R4 : R1∪R2 as defined in Fig. 1c

37 max( f ) −min( f )

38 std( f ) std: standard deviation

39 iqr(x) ∗ iqr(y) ∗ iqr(z)
40**

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T

2 iqr fð Þð Þ2 ∑v f
2

q

41 ∑i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2xi þ a2yi þ a2zi

q

42* (∑N−1
i¼1 aiþ1−aij jÞ=T

43 ∫t2t1 fj j t1 : start point of signal peak
t2 : end point of signal peak

44* (∑t(min(ax)))/T

45** (∑t(max(ay)))/T

46 Nzero − cross(vy)

47** (∑t(min(az)))/T

48* (∑t(max(af)))/T
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novice groups [46, 47]. The SVM was used with a linear
kernel. These classifiers were chosen as examples because
they are simple and effective with proven performance.
Classifiers based on neural networks were not used since they
require large datasets. Classifiers were implemented in
MATLAB.

A nested cross-validation procedure was used to tune
the hyperparameters. An outer loop was run for 10 itera-
tions, each time randomly selecting the outer train set and
the outer test set. The splitting was done across subjects. In
each iteration, k-fold cross validation with k = 10 was used
within the outer train set, i.e., dividing this set to 10 sub-
sample sets, 9 inner train sets and 1 inner test set. The
hyperparameter was tuned in this inner 10-iteration loop
providing the best result for the inner test set. The tuned
values were used on the isolated outer test set yielding the
accuracy values, reported as the results of this article.

For the KNN and FKNN classifiers, the range 1–10, with
increments of 1, was investigated as the value of K and K = 7
provided the best results. For the SVM, the range 1–10, with
increments of 1, was investigated as the value of box con-
straint c, and c = 3 provided the best results.

3 Results

3.1 Influence of the number of premium features

Various splits were investigated, namely, 50%-50%, 60%-
40%, and 70%-30%, for the outer train and outer test sets,
respectively, and 60%-40% split was chosen. Performance
of classifiers was assessed based on different numbers of se-
lected premium features from 5 to 30. Figure 3 demonstrates

the obtained values of accuracy based on number of premium
features. SVM demonstrated the best overall performance.
The results indicate that overall classifier performance was
improved when the number of premium features was in-
creased to 15. For higher feature numbers, accuracy either
decreased or did not significantly increase.

3.2 Performance at selected working point

Figure 4 provides a comparison of classifier performance for
all scenarios for the working point of 15 best features and
outlines that SVM classifier has the best overall performance
with accuracy values ranging from 86 to 90%. On average,
classifier accuracy values range between 83 and 85%. In
Table 2, the best 30 features are marked with one asterisk (*)
and the best 15 features with two asterisks (**).

4 Discussion

4.1 Differentiating skilled and novice performance

The scenarios utilized in this study involved aspirator skills
used in human tumor resections, part of the surgical armamen-
tarium of neurosurgeons and senior residents, but not yet ac-
quired by all junior residents and medical students. It seemed
reasonable to define a skilled and novice group based on the
required skill set [9, 26].

We applied 4 different classifiers to the dataset involving
these participants. Our results demonstrate that the 4 classi-
fiers achieved a comparable performance, which was expect-
ed, but since this was a preliminary study, we included several
classifiers in our analysis. The obtained accuracy values were
as high as 90%, obtained by SVM, indicating the potentials of
classifiers in differentiating participants doing VR procedures.
We see in Fig. 4 that classifier accuracy values are within an
11% range, which signifies good agreement between them. In
addition, based on Fig. 4, average classifier accuracy values
range between 83 and 85%, meaning that classifier perfor-
mance is not sensitive to the scenario considered.

Derivative and force features contain information about
how smoothly an individual operates. Table 3 presents the
number and index (referring to Table 2) of position, force,
and derivative features that were selected among the best 30
and best 15 features. Signals recorded from the simulator in-
cluded x, y, z, roll, pitch, yaw, and force. We can see that while
force was 1 out of 7 signals recorded, the force features con-
stitute 12 out of 30 best features and 6 out of 15 best features,
which underlines the importance of force features. Referring
to Fig. 4, the accuracy of classifiers is within an 11% range for
different scenarios with the same set of features (minimum for
Scenario 1 by KNN and maximum for Scenario 4 by SVM).
In future studies, scenarios could be defined targeted towards

Table 2 (continued)

49 max(V)
50**

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 5

2 iqr fð Þð Þ2 ∑ j f
2

q
51** std( f )/std(vy) std: standard deviation
52* Nminimum(x)
53** Nminimumvx)
54** (∑t(max( f )))/∑ t(min( f )))
55 Nextermum(af)
56 ∑t(vf ≥ 0)/∑ t(vf) ≤ 0
57 Nmin(x) +Nmin(y) +Nmin(z)
58 Nextermum(y)
59* ∑N−1

i¼1 jyawiþ1−yawij
60 (∑N−1

i¼1 vpitchiþ1−vpitchi
�� ��Þ=T

61 mean(pitch) ∗ T/ max(vpitch) −min(vpitch)
62** Nmax(yaw) +Nmax(pitch) +Nmax(roll)
63 Nextermum(yaw)
64** Nextermum(roll)
65* Nextermum(vpitch)
66 ∑N−1

i¼1 jpitchiþ1
− jpitchi

���
���=mean jpitch

�� ��
67 ∑t(max(yaw)) − ∑ t( min(yaw)/T
68 ∑

R1
f R1 as defined in Fig. 1c
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investigating performance obtained for various sets of
features.

4.2 Misclassification

Table 4 presents the range of individuals misclassified by the
SVM. Using this classifier, 7–9 out of 10 skilled individuals
and 31–34 out of 36 novices in the test set were correctly
classified. Some neurosurgeons in this study had cerebrovas-
cular, spinal, and functional specialization with little exposure
to tumor resection, which may be one reason for misclassifi-
cation. Some junior residents may have been misclassified
since they had obtained the required surgical skills. Studies
involving more complex scenarios, larger resident numbers,
and better understanding of which factors and/or combination
of metrics to use to better differentiate groups are needed. The
potential of machine learning classifiers applied to VR proce-
dures in surgical disciplines is that the new features identified
will result in new “metrics,” which can then be evaluated in
other systems. These results may not only help us understand
the psychomotor skills needed to increase surgical skills but
also aid in resident assessment and training and improve pa-
tient outcomes.

Fig. 3 Classification results for
different number of selected
premium features and with a
60%–40% train to test set size
ratio, Scenario 1 (a), Scenario 2
(b), Scenario 3 (c), Scenario 4 (d),
Scenario 5 (e), Scenario 6 (f) with
resultant accuracy values (%) for
each scenario and each classifier
employed: K-Nearest Neighbors
(KNN), Parzen Window (PW),
Support Vector Machine (SVM),
and Fuzzy K-Nearest Neighbors
(FKNN)

Fig. 4 Classification results for selected working point (15 best features
and 60% train set size) with resultant average accuracy (%) for each
scenario and each classifier employed: K-Nearest Neighbors (KNN),
Parzen Window (PW), Support Vector Machine (SVM), and Fuzzy K-
Nearest Neighbors (FKNN)
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4.3 Agreement between classifiers

Cohen’s Kappa measure was used to investigate the agree-
ment between pairs of classifiers. Table 5 defines the level
of agreement for different ranges of Kappa.

Table 6 includes the obtained Kappa values for different
scenarios. As could be seen the Kappa values, overall lie in the
substantial agreement range. The agreement for FKNN-KNN
pair is higher than that of other pairs for each scenario. The
reason could be the similarity of the method used by these two
classifiers.

4.4 Strengths and limitations of the study

The importance of these results lies in their potential educa-
tional application to aid in neurosurgical resident training and
further defining the psychomotor skill sets of expert surgeons
[7]. Machine learning and artificial intelligence as applied to
VR surgical studies should be seen as useful adjuncts and not
a replacement for standard residency training. By relying on
68 features, these classifiers can automatically capture multi-
ple aspects of psychomotor performance and segregate partic-
ipants into “skilled” or “novice” group. However, this should
be seen as an initial step of a formative educational process,
prompting instructors to further assess and coach a resident’s
performance to a desired level.

A number of strengths and limitations could be highlighted
related to subject recruitment, features, classifiers, and the
simulator platform used in this study:

1) Comparing similar previous studies [32–37], having a
large number of surgeons participating in this study could

be considered a strength. However, this is generally a
limitation and many institutes may not have access to
many surgeons. Defining large populations of residents
and neurosurgeons with equivalent experience in surgery
and in VR simulation is challenging. Sixteen practicing
board-certified neurosurgeons from 3 institutions with
different areas of expertise participated in this study,
which is felt to be representative of a general neurosurgi-
cal population. We only enrolled residents and medical
students from one institution that limits extension of these
results. The authors believe that increasing study partici-
pants from multiple institutions may further our ability to
improve classifier performance to distinguish neurosurgi-
cal skill level at various stages of resident training. In our
study, we were not able to recruit as many individuals in
the skilled group in comparison with the novice group.

2) In the statistical and forward feature selection stages, fea-
tures were selected irrespective of classifiers, which could
be considered a strength. On the other hand, many of the
features included in this investigation have not been
assessed in more complex scenarios. Therefore, it is not
known if the same features would also be applicable to
those scenarios. Whether these features are the most ap-
propriate or others, such as the force pyramid or automa-
ticity, would be more useful needs to be assessed [18–21].

3) In many studies, the performance of only 1 classifier, e.g.,
SVM, has been analyzed. In this study, we analyzed the
performance of 4 example classifiers. However, this anal-
ysis is not exhaustive. For example, classifiers based on
neural networks have been excluded. Availability of larg-
er datasets could make performance analysis of such clas-
sifiers possible. In this study, we focused on time domain

Table 3 Breakdown of selected premium features by number and index (referring to Table Table 2)

Position Force Derivatives

Position Force Position and force

Best 30 features
(number and indices)

6 features (23, 32,
52, 59, 62, 64)

4 features (17, 35, 36, 54) 12 features (9, 10, 11, 20, 27,
31, 42, 44, 45, 47, 53, 65)

4 features (14, 40, 48, 50) 4 features
(3, 8, 16, 51)

Best 15 features
(number and indices)

3 features
(23, 62, 64)

2 features (17, 54) 6 features (9, 20, 31, 45, 47, 53) 2 features (40, 50) 2 features (8, 51)

Table 4 The range of numbers of individuals correctly and incorrectly
classified by the SVM (c = 3, and 15 features selected) in the 6 different
scenarios

Classified as skilled Classified as novice

Skilled, N = 10 7–9 1–3

Novice, N = 36 2–5 31–34

N = 46

Table 5 Classifier agreement based on Kappa values

Kappa < 0: No agreement

Kappa between 0.00 and 0.20: Slight agreement

Kappa between 0.21 and 0.40: Fair agreement

Kappa between 0.41 and 0.60: Moderate agreement

Kappa between 0.61 and 0.80: Substantial agreement

Kappa between 0.81 and 1.00: Almost perfect agreement
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features. While, some of these features, such as those
based on derivatives, implicitly contain information about
frequency of the signal, the frequency domain features
could be investigated further in future studies.

4) A simulated aspirator was utilized in the dominant
hand, which is not representative of the bimanual psy-
chomotor skills and multiple instruments employed
during real tumor resections. Previous studies have
demonstrated differences in ergonomics between
right- and left-handed operators, and this issue was

not addressed in this investigation and deserves further
study [18].

5) The different visual and haptic complexities of simulated
tumors utilized and task duration may not adequately dis-
criminate operator performance. More complex and real-
istic tumor scenarios with simulated bleeding involving
use of bimanual instruments are being studied using clas-
sifiers, which may be more useful.

6) Virtual reality simulation of neurosurgery is a devel-
oping field still in its infancy. The focus of the current
exploratory study was on the investigation of the sep-
arability of expert and novice performance in a VR
simulator using machine learning, which has not been
reported earlier. Furthermore, such studies could pro-
vide an analysis of what features could be more impor-
tant in the context of expert performance as identified
by asterisks in Table 2 and summarized in Table 3. The
analyses generated by such exploratory studies could
provide hypotheses, which could be proven or
disproven in the future by more focused confirmatory
studies. We believe more machine learning exploratory
studies are needed on other scenarios that may involve
other factors such as bimanual dexterity, bleeding, and
more complex tumor geometries.

Improving the choice of features and classifiers goes hand
in handwith improving the simulator design and performance.
Studies such as the current study could shed light on useful
features and classifiers and could guide simulator develop-
ment in the right direction. From performance assessment
point of view, the classifiers, even when they are not interpret-
able, could be useful in distinguishing skill level. From train-
ing point of view, a future stage of this research could be to
make better sense of models and features obtained. This un-
derstanding would be important in teaching residents the re-
quired surgical skills and establishing a formative assessment
strategy. From interpretability point of view, future machine
learning research could adopt different paths, e.g., choosing
interpretable models or interpreting black box models [48].
Improving the simulators on the other hand could make sce-
narios more realistic for neurosurgeons and creating a better
platform for them to show their skills, and as a result, classifier
performance would be improved.

5 Conclusion

The goal of this article is to highlight the potentials of machine
learning in VR simulators in the context of neurosurgical res-
ident training and helping further define the psychomotor skill
set of the neurosurgeons. This study could construct a plat-
form for more advanced machine learning algorithms, e.g.,
based on deep learning, and justify the necessity of obtaining

Table 6 Kappa values for different classifier pairs

Classifier pair Kappa

Black SVM-KNN 0.6168 ± 0.12

SVM-FKNN 0.6431 ± 0.09

SVM-PW 0.6761 ± 0.13

PW-KNN 0.6185 ± 0.17

PW-FKNN 0.6153 ± 0.12

FKNN-KNN 0.7145 ± 0.13

Glioma SVM-KNN 0.5913 ± 0.16

SVM-FKNN 0.5797 ± 0.15

SVM-PW 0.6141 ± 0.12

PW-KNN 0.5830 ± 0.12

PW-FKNN 0.6572 ± 0.22

FKNN-KNN 0.7790 ± 0.09

White SVM-KNN 0.6290 ± 0.10

SVM-FKNN 0.6336 ± 0.26

SVM-PW 0.6408 ± 0.17

PW-KNN 0.6769 ± 0.09

PW-FKNN 0.7280 ± 0.13

FKNN-KNN 0.7149 ± 0.10

Soft SVM-KNN 0.5177 ± 0.08

SVM-FKNN 0.5778 ± 0.10

SVM-PW 0.6155 ± 0.05

PW-KNN 0.5183 ± 0.08

PW-FKNN 0.5998 ± 0.11

FKNN-KNN 0.7901 ± 0.19

Medium SVM-KNN 0.6022 ± 0.10

SVM-FKNN 0.5781 ± 0.07

SVM-PW 0.5807 ± 0.11

PW-KNN 0.6385 ± 0.22

PW-FKNN 0.6600 ± 0.16

FKNN-KNN 0.7737 ± 0.22

Hard SVM-KNN 0.6158 ± 0.13

SVM-FKNN 0.6613 ± 0.11

SVM-PW 0.6090 ± 0.18

PW-KNN 0.5939 ± 0.16

PW-FKNN 0.6104 ± 0.09

FKNN-KNN 0.7597 ± 0.13
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larger datasets from a large number of institutes. In the longer
term, this may help realign the present apprenticeship educa-
tional paradigmwith a more objective model, based on proven
performance standards.
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