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IMPORTANCE How the Intelligent Continuous Expertise Monitoring System, an artificial
intelligence tutoring system, might be best optimized for surgical training is unknown.

OBJECTIVE To determine the effects of artificial intelligence–augmented personalized
expert instruction vs intelligent tutoring alone on surgical performance, skill transfer,
and affective-cognitive responses.

DESIGN, SETTING, AND PARTICIPANTS This single-blinded randomized clinical trial was conducted
among a volunteer sample of medical students in preparatory, first, or second year without prior
use of a virtual reality surgical simulator (NeuroVR) at the McGill Neurosurgical Simulation and
Artificial Intelligence Learning Centre in Montreal, Quebec, Canada. Cross-sectional data
were collected from March to September 2024, and per-protocol data analysis was conducted
in March 2025.

INTERVENTION During simulated surgical procedures, trainees received 1 of 3 feedback methods.
Group 1 received only intelligent tutor instruction (control). The 2 intervention arms included
group 2, which received expert feedback in identical words to the intelligent tutor, and group 3,
which received artificial intelligence data–informed personalized expert feedback.

MAIN OUTCOMES AND MEASURES The coprimary outcomes included change in overall surgical
performance across practice resections and skill transfer to a complex realistic scenario,
measured by artificial intelligence–calculated composite expertise score (range, −1.00
[novice] to 1.00 [expert]). Secondary outcomes included emotional and cognitive demands,
measured via questionnaires.

RESULTS In this randomized clinical trial, the final analysis included 87 medical students
(46 [53%] women; mean [SD] age, 22.7 [4.0] years), with 30, 29, and 28 participants in
groups 1, 2, and 3, respectively. Group 3 achieved significantly higher scores than group 1
across several trials, including trial 5 (mean difference, 0.26; 95% CI, 0.09-0.43; P = .01)
and the realistic task (mean difference, 0.20; 95% CI, 0.06-0.34; P = .02). Group 3 also
achieved significantly better scores than the other 2 groups in certain metrics, such as
bleeding and injury risk. Emotions and cognitive load demonstrated significant differences.

CONCLUSIONS AND RELEVANCE In this randomized clinical trial, personalized expert
instruction resulted in enhanced surgical performance and skill transfer compared with
intelligent tutor instruction, highlighting the importance of human input and participation
in artificial intelligence–based surgical training.

TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT06273579
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A lthough expert surgical technical skill is linked with
improved patient outcomes, training novices to mas-
ter these skills remains challenging.1-3 Current surgi-

cal teaching models lack standardization4-7 and rely on
qualitative performance assessments by human experts
rather than quantitative performance data.8 Artificial intelli-
gence (AI) tutoring systems have the potential to address
these shortcomings due to their ability to process and ana-
lyze large, complex datasets, exceeding human capacity for
pattern recognition.9-13 The goal of these technologies is to
create standardized AI-enhanced surgical curricula to
improve trainee bimanual skills, thereby achieving better
patient outcomes.14-19

In a randomized clinical trial (RCT), the Virtual Operative
Assistant (VOA) intelligent tutoring system effectively aug-
mented surgical performance on a virtual reality (VR) simu-
lator via post hoc AI-selected metric feedback.9,10 The VOA
lacks the ability to assess real-time surgical performance and
deliver continuous intraoperative instruction, limiting its
educational utility in the dynamic operating room environ-
ment. The Intelligent Continuous Expertise Monitoring Sys-
tem (ICEMS) addresses the necessity for real-time applica-
tion by using a multi-algorithm approach to assess bimanual
surgical skills at 0.2-second intervals and provide continu-
ous, action-oriented verbal feedback.11 Built based on quan-
tifiable, AI-derived metrics that enable continuous perfor-
mance scored from −1.00 (novice) to 1.00 (expert),11 the ICEMS
demonstrates explainability and transparency critical to edu-
cator and learner engagement.20-22 The ICEMS can be inte-
grated into any VR surgical simulator, including the NeuroVR
(CAE Healthcare). This system has been validated for its abil-
ity to accurately differentiate surgical expertise levels, track
skill acquisition throughout a neurosurgical training program,11

and serve as a pedagogical tool for risk assessment, coaching,
and error detection.12

Another RCT demonstrated that ICEMS feedback yielded
enhanced learning outcomes compared with expert feed-
back during a simulated surgical task.12 Instructors in this study
were blinded to the ICEMS error data and depended on quali-
tative observation rather than the quantitative evaluations of-
fered by the ICEMS. A cohort study investigating VR surgical
skill acquisition found that an AI-enhanced curriculum re-
sulted in unintended consequences that negatively impacted
some efficiency metrics, indicating a potential necessity for
human expert input.13 A randomized crossover trial assessed
the effect of using both ICEMS and expert instruction meth-
odologies in succession and found that ICEMS feedback sig-
nificantly improved surgical performance following expert
instruction.23 These results suggest that AI-enhanced curri-
cula may benefit from collaboration between human educa-
tors and intelligent tutors.

This study aimed to investigate the effect of AI-
augmented human instruction—where human surgical edu-
cators were provided with quantitative ICEMS performance
data—on learners’ technical skill acquisition during simula-
tion training. We hypothesized that expert instructors sup-
ported by quantitative AI data to deliver continuous person-
alized instruction would be more effective at improving

learning and transfer of surgical technical skills among train-
ees compared with AI instructors, while also resulting in lower
negative emotions and cognitive load.24,25

Methods
This parallel-design, single-blinded, 3-arm RCT, approved by
the McGill University Health Centre Research Ethics Board,
was registered at ClinicalTrials.gov on February 16, 2024
(NCT06273579), and follows the Consolidated Standards of
Reporting Trials–Artificial Intelligence (CONSORT–AI)26

guideline and the Machine Learning to Assess Surgical
Expertise checklist.27 Participants provided written informed
consent. The trial protocol and statistical analysis plan are
available in Supplement 1.

Participants
Participants were recruited between March and September
2024 for a single 90-minute surgical simulation session at
the Neurosurgical Simulation and Artificial Intelligence
Learning Centre in Montreal, Quebec, Canada (Table). A
sample size calculation for a repeated measures analysis of
variance (ANOVA) with a between-participants factor was
conducted using G*Power version 3.1 (Heinrich-Heine-
Universität Düsseldorf).28 A power of 0.9, an effect size of
0.3, an α error probability of 0.05, and a correlation among
repeated measures of 0.512 yielded a total of 87 participants,
with 29 participants in each of 3 groups. Volunteer sampling
was used to attain the desired sample size. Recruitment
information was disseminated via student groups, social
media, and word of mouth. Inclusion criteria consisted of
enrollment in preparatory, first, or second year at 1 of 4
Quebec medical schools. The exclusion criterion was previ-
ous NeuroVR experience.

Randomization
Students were stratified based on their year in medical school
and block randomized to 1 of 3 intervention arms with an al-
location ratio of 1:1:1 using random number sequences
generated by Random.org.29 The participant recruitment
flowchart is outlined in Figure 1.

Key Points
Question Does artificial intelligence–augmented personalized
expert instruction improve surgical performance, skill transfer,
and affective-cognitive responses compared to intelligent
tutoring alone?

Findings In this randomized clinical trial of 88 medical students,
trainees achieved significantly higher performance scores when
tutored by a human educator providing personalized feedback
based on artificial intelligence error data than by an intelligent
tutor alone.

Meaning Providing human educators with artificial intelligence
performance data to tailor feedback improves learning outcomes
in surgical simulation training.
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Simulation Session
All tasks were performed on the NeuroVR, a surgical simula-
tor that simulates a subpial brain tumor resection procedure
in a 3-dimensional VR environment.30 The session consisted
of 2 scenarios that have demonstrated face, content, and con-
struct validity11,16,31: (1) a practice subpial resection task (eFig-
ure 1 in Supplement 2) and (2) a realistic subpial brain tumor
resection (eFigure 2 in Supplement 2).32 These tasks involved

the use of bipolar forceps and an ultrasonic aspirator, each
attached to a haptic handle, to completely resect the abnor-
mal tissue while minimizing bleeding and damage to the
surrounding healthy tissue.15,33 Participants performed six
5-minute practice tasks to assess their learning, followed by a
13-minute realistic task to assess skill transfer to a more
complex procedure. A 5-minute rest period was afforded to
participants between each task.

Table. Demographic Characteristics of Included Study Participants

Characteristic

No. (%)

Group 1: AI tutor
instruction (n = 30)

Group 2: expert
instruction (n = 29)

Group 3: personalized
expert instruction (n = 28)

All participants
(N = 87)

Age, mean (SD), y 21.8 (2.4) 22.6 (4.4) 23.9 (4.8) 22.7 (4.0)

Sex

Female 18 (60) 16 (55) 12 (43) 46 (53)

Male 12 (40) 13 (45) 15 (54) 40 (46)

Prefer not to say 0 0 1 (4) 1 (1)

Gender

Woman 18 (60) 16 (55) 12 (43) 46 (53)

Man 12 (40) 13 (45) 15 (54) 40 (46)

Prefer not to say 0 0 1 (4) 1 (1)

Undergraduate
medical training level

Preparatory 9 (30) 8 (28) 8 (29) 25 (29)

First 15 (50) 14 (48) 13 (46) 42 (48)

Second 6 (20) 7 (24) 7 (25) 20 (23)

Institution

McGill University 11 (37) 15 (52) 14 (50) 40 (46)

Université de Montréal 12 (40) 7 (24) 6 (21) 25 (29)

Université de Sherbrooke 4 (13) 6 (21) 7 (25) 17 (20)

Université Laval 3 (10) 1 (3) 1 (4) 5 (6)

Handedness

Right 28 (93) 25 (86) 24 (86) 77 (89)

Left 2 (7) 3 (10) 4 (14) 9 (10)

Ambidextrous 0 1 (3) 0 1 (1)

Interest in pursuing
surgery, mean (SD)a

4.0 (0.9) 4.1 (1.0) 3.9 (1.0) 4.0 (1.0)

Completed surgical rotation,
clerkship, or shadowing

Yes 12 (40) 10 (34) 11 (39) 33 (38)

No 18 (60) 19 (66) 17 (61) 54 (62)

Plays video games

Yes 8 (27) 9 (31) 13 (46) 30 (34)

No 22 (73) 20 (69) 15 (54) 57 (66)

Played musical instruments
in last 5 y

Yes 9 (30) 9 (31) 13 (46) 30 (34)

No 21 (70) 20 (69) 15 (54) 56 (64)

Participated in activities
that require hand dexterity

Yes 8 (27) 12 (41) 11 (39) 31 (36)

No 22 (73) 17 (59) 17 (61) 56 (64)

Previously used
VR surgical simulation

Yes 1 (3) 2 (7) 5 (18) 8 (9)

No 29 (97) 27 (93) 23 (82) 79 (91)

Abbreviations: AI, artificial
intelligence; VR, virtual reality.
a Self-reported on a 5-point Likert

scale, with 1 indicating less interest
and 5 indicating more interest.

Artificial Intelligence–Augmented Human Instruction and Surgical Simulation Performance Original Investigation Research

jamasurgery.com (Reprinted) JAMA Surgery Published online August 6, 2025 E3

© 2025 American Medical Association. All rights reserved, including those for text and data mining, AI training, and similar technologies.

Downloaded from jamanetwork.com by McGill University Libraries user on 08/06/2025

https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamasurg.2025.2564?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamasurg.2025.2564
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamasurg.2025.2564?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamasurg.2025.2564
http://www.jamasurgery.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamasurg.2025.2564


Study Procedure
Prior to the simulation session, participants read and
signed an informed consent form. They then completed a
pretrial questionnaire recording demographic information
and self-reported baseline emotions using the Medical
Emotions Scale (MES) (eFigure 3 in Supplement 2).34 Follow-
ing the performance of 6 practice tasks, participants
completed a peritrial questionnaire to assess the strength
of emotions elicited during training using the MES. After
the realistic task, students filled out a posttrial question-
naire that recorded emotions after training using the
MES and self-reported cognitive load using the Cog-
nitive Load Index (CLI).35 Participants and instructors
were blinded to group assignments and study outcomes.
The study procedure is outlined in eFigure 4 in Supple-
ment 2.

Interventions
The ICEMS continuously assessed each participant’s perfor-
mance at 0.2-second intervals and calculated expertise scores
based on the following performance metrics: healthy tissue
injury risk, bleeding risk, instrument tip separation distance,
bipolar forceps force, and ultrasonic aspirator force.11,12

An error was defined as a difference of more than 1 standard
deviation from the expert benchmark for more than 1
second.11,12

All participants completed a practice task during
which they did not receive feedback to establish a baseline.
They proceeded to perform their second through fifth
repetitions of the practice task while receiving intraoperative
instruction, with the feedback delivery method varying
between groups. No post hoc feedback was provided.
All groups completed a sixth practice task without feed-
back, serving as a summative assessment. Finally, they
completed the realistic brain tumor resection task
without feedback to assess skill transfer to a more complex
scenario.

All instructors were neurosurgical residents who under-
went evaluation by a senior consultant and were identified
as competent for their ability to train novices during simu-
lated subpial resection procedures.

Group 1 (Control): AI Tutor Instruction
The control group received real-time verbal feedback deliv-
ered by the ICEMS when a metric error was detected.

Group 2: Expert Instruction
One experimental group received in-person, real-time verbal
feedback from 1 of 2 neurosurgical residents (A.K.A., post-
graduate year [PGY] 4; or M.A., PGY 5) based on ICEMS error
detection. The ICEMS alerted the instructor via colored indi-
cators when a metric error was detected, and the instructor
delivered feedback to the trainee using the exact wording
provided by the ICEMS (eTable in Supplement 2).

Group 3: Personalized Expert Instruction
One experimental group received AI-augmented, in-person,
real-time verbal feedback from a neurosurgical resident
(A.A., PGY 4) based on ICEMS error detection. The ICEMS
alerted the instructor via colored indicators when a metric
error was detected, and the instructor delivered tailored,
personalized feedback to the trainee without restriction to
ICEMS wording.

Outcome Measures
The first coprimary outcome was trainee learning and over-
all surgical performance on NeuroVR practice tasks,
as scored by the ICEMS, which assessed each participant’s
performance in 0.2-second intervals. The second copri-
mary outcome was trainee technical skill transfer to a
realistic resection task on the NeuroVR, as scored by the
ICEMS.

The secondary outcome was trainees’ self-reported affec-
tive-cognitive responses.36 These included the strength of
emotions elicited before, during, and after training and cog-
nitive load after training. Emotions and cognitive load were
measured via questionnaires using the MES34 on a 7-point
Likert scale and the CLI35 on a 5-point Likert scale.

Statistical Analysis
Within-group differences from baseline in practice task scores
and MES scores were compared using a mixed-model 1-way
ANOVA. Between-group comparisons at each time point for

Figure 1. Participant Recruitment Flowchart

88 Medical students assessed
for eligibility

88 Randomized

29 Included in analysis 28 Included in analysis30 Included in analysis
1 Excluded from analysis due to

technical issues during the
simulation session

29 Randomized to the expert
instruction group
29 Received intervention

as randomized

31 Randomized to the AI tutor
instruction group
31 Received intervention

as randomized

28 Randomized to the personalized
expert instruction group
28 Received intervention

as randomized

AI indicates artificial intelligence.
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practice task scores and MES scores were conducted using a
mixed-model 2-way analysis of covariance (ANCOVA), with
baseline performance as a covariate. Realistic task scores and
CLI scores were compared using a 1-way ANOVA. Post hoc pair-
wise comparisons were adjusted for multiple testing using the
Tukey method for between-group differences and the Šidák
method for within-group differences. Assumptions of normal-
ity and homogeneity of errors, as well as the presence of out-
liers, were investigated with graphical analyses of model re-
siduals. Outlier observations were removed. Means from Likert
items were computed prior to analysis of emotions and cog-
nitive load. All statistical hypothesis tests were 2-sided and
performed at a significance level of 0.05. Statistical analyses
and score predictions were performed using R version 4.4.3
(R Foundation).37 Data analysis was conducted in March 2025.

Results
A total of 88 medical students enrolled in Quebec medical
schools were block randomized according to their year of study,
with 31 in the AI tutor instruction group (group 1), 29 in the
expert instruction group (group 2), and 28 in the personal-
ized expert instruction group (group 3). Data from 1 partici-
pant in group 1 were excluded from analysis due to technical
issues that occurred during the simulation session. The ICEMS
assessed data from 87 participants (46 female students [53%];
mean [SD] age, 22.7 [4.0] years), including 522 practice resec-
tions and 87 realistic resections (Table). No statistically sig-
nificant differences between groups were found in baseline
demographic information.

Performance Across Practice Subpial Resection Trials
Following the baseline assessment (trial 1), the mean compos-
ite expertise scores were −0.58 (95% CI, −0.68 to −0.49) for
group 1, −0.60 (95% CI, −0.70 to −0.50) for group 2, and −0.55
(95% CI, −0.65 to −0.44) for group 3. Group 3 significantly out-
performed group 1 during trial 4 (mean difference, 0.26;
95% CI, 0.09-0.43; P = .01) and trial 5 (mean difference, 0.26;
95% CI, 0.09-0.43; P = .01). Although group 3 generally
achieved higher mean scores than group 2 across practice trials,
these differences were not statistically significant. During
trial 5, group 2 significantly outperformed group 1 (mean dif-
ference, 0.23; 95% CI, 0.04-0.41; P = .02), indicating that the
presence of a human instructor may play a role in improving
trainee surgical performance. No statistically significant dif-
ferences between groups were observed during trial 6. The only
group whose mean expertise score surpassed the novice thresh-
old of 0 was group 3 in trial 4. For within-group differences,
all groups demonstrated statistically significant improvements
in their scores from baseline across practice trials (Figure 2A).

Scores for individual ICEMS metrics used for compe-
tency training were also assessed. Personalized expert instruc-
tion, the intervention delivered to group 3 participants, largely
resulted in metric scores closer to expert benchmarks than the
other 2 interventions. From trials 3 to 6, group 3 achieved sig-
nificantly lower bleeding risk than both groups 1 and 2 and
lower injury risk than group 1 (Figure 2B and C). For aspirator

force, group 3 significantly outperformed group 2 during trials
4 and 6 and group 1 during trials 3 and 4 (Figure 2D). Within-
group comparisons revealed that all groups improved signifi-
cantly from their baseline performance on several metrics,
with group 3 showing the most consistent improvement.

Performance During Realistic Subpial Resection Task
After completion of the realistic task, the mean composite
expertise scores were −0.35 (95% CI, −0.45 to −0.24) for group
1, −0.32 (95% CI, −0.43 to −0.21) for group 2, and −0.14
(95% CI, −0.25 to −0.04) for group 3. Group 3 significantly
outperformed both group 1 (mean difference, 0.20; 95% CI,
0.06-0.34; P = .02) and group 2 (mean difference, 0.18;
95% CI, 0.03-0.32; P = .049), underscoring better skill trans-
fer (Figure 3A). Group 3 also outperformed group 1 on both risk
assessment metrics, achieving significantly lower bleeding
risk (mean difference, 0.11; 95% CI, 0.05-0.16; P < .001) and
injury risk (mean difference, 0.03; 95% CI, 0.01-0.04; P = .009)
(Figure 3B and C). No statistically significant differences be-
tween groups were found for aspirator force, bipolar force,
and tip separation distance (Figure 3D-F).

Emotions and Cognitive Load
Group 3 reported significantly greater levels of negative
activating emotions (eg, frustration) than group 1 after the
trial (mean difference, 0.42; 95% CI, 0.01-0.82; P = .04).
No between-group differences were observed for positive de-
activating and negative deactivating emotional categories.
The only group that experienced a statistically significant in-
crease in positive deactivating emotions (eg, relief) was group
1 following the practice trials (Figure 4A). All 3 groups expe-
rienced statistically significant increases in both negative ac-
tivating and negative deactivating emotions (eg, disappoint-
ment) after the practice trials, although these differences only
persisted for group 3 after the realistic task (Figure 4B and C).
Pairwise comparisons for cognitive load indicated that group
3 had a significantly higher intrinsic cognitive load compared
to group 1 (mean difference, 0.56; 95% CI, 0.18-0.94; P = .02).
No differences in extraneous or germane cognitive load
were found (Figure 4D).

Discussion
To the authors’ knowledge, this RCT is the first study that as-
sesses the pedagogical utility of augmenting personalized
expert instruction with AI error data to improve surgical train-
ing. Intelligent tutors that provide action-oriented feedback
for assessment, coaching, and risk mitigation are adaptable to
any surgical or technical specialty dependent on bimanual
psychomotor expertise.9,11 The main challenge in incorporat-
ing these technologies in surgical education paradigms is
harnessing both the human instructor’s expertise and the AI
platform’s real-time data processing to maximize student
engagement and learning.9,11

Consistent with our hypothesis, the findings of this RCT
demonstrate that AI-augmented personalized expert instruc-
tion yields improved surgical performance and skill transfer
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compared with AI tutor instruction. The expert instruction
group exhibited results superior to AI tutor instruction but in-
ferior to AI-augmented personalized expert instruction and
failed to significantly improve skill transfer. The ICEMS’s ca-
pacity to supply quantitative data on individual risk assess-

ment and coaching metrics facilitates the understanding of
these results by providing explainability and transparency.20-22

The ICEMS was developed using a long short-term memory
network trained on performance data from experts (neuro-
surgeons) and novices (medical students).11 Its algorithm

Figure 2. Performance Assessment Across Practice Trials
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primarily uses risk assessment metrics to calculate compos-
ite scores, with a secondary focus on coaching metrics.11 The
instructor’s capacity to continuously modify individual feed-
back based on AI data in the AI-augmented personalized ex-
pert instruction group was shown to be particularly benefi-
cial for risk mitigation. All trials were recorded, and studies
are being carried out to determine which commands elicited

the best responses among participants. The expert instruc-
tion group’s outperformance of the AI instruction group in
some trials suggests that the mere presence of a human in-
structor using identical words to the ICEMS may play a role in
improved student engagement.38 Other human factors, such
as nonverbal cues and adaptive communication, may also in-
fluence student learning outcomes, but this requires further

Figure 3. Performance Assessment During Realistic Task
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significant differences between groups (P < .05) during the realistic task.
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investigation.39,40 During summative assessment trial 6, the
personalized expert instruction group significantly outper-
formed the AI instruction group in bleeding and injury risk.
However, no statistically significant between-group differ-
ences were found in the ICEMS composite scores in this trial.
This may be attributed to learner fatigue.41 Future studies
should evaluate the mental fatigue of participants via self-
report questionnaires.

A previous RCT conducted at our laboratory involving
ICEMS tutoring was unable to demonstrate statistically sig-
nificant between-group differences during the realistic task.12

In this study, we provide evidence that AI-augmented person-
alized expert instruction more effectively improves skill trans-
fer to a realistic scenario than AI tutor instruction and expert
instruction. This realistic task more closely approximates a real
brain tumor resection and involves similar competencies. Stud-
ies assessing whether this finding holds true for skill transfer
from VR simulation to more realistic operating room environ-
ments using ex vivo animal models are in development.42-45

Unlike other RCTs conducted at our center,10,12 this inves-
tigation did not include post hoc instruction, but resulted in
equivalent increases in ICEMS expertise scores. In this RCT,
continuous intraoperative action-directed feedback based on
quantitative AI data was a critical determinant of learning. The
impact of intraoperative combined with post hoc instruction
in simulation curriculum design needs further assessment.

Our secondary hypothesis is not supported by the results.
All 3 groups experienced significant increases in negative de-
activating emotions, such as disappointment, during the trial.
Posttrial levels of negative activating emotions, such as fear,
were significantly greater in the personalized expert instruc-
tion group compared with the AI instruction group. Negative
activating emotions often result in variable behavioral re-
sponses that may support or impede learning. The personalized
expert instruction group’s superior performance during the re-
alistic task highlights the potential role of these emotions in
supporting learning in this context.46,47 The personalized ex-
pert instruction group reported significantly higher intrinsic

Figure 4. Emotions and Cognitive Load Throughout Simulation Training
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cognitive load than the AI instruction group, indicating in-
creased mental effort required to understand the complexity
of the variable instructions.48,49 Research focused on nega-
tive activating emotions and cognitive load may help opti-
mize learning with intelligent tutors.

Consistent with tenets of learning theory,50-52 providing
human instructors with quantitative AI performance data
and allowing them to use their expertise to tailor and con-
textualize feedback leads to improved learning. Increased
intraoperative educator-student engagement in this learning
paradigm based on quantitative learner performance data
may be the critical element explaining this study’s findings.
This RCT and our crossover study23 results suggest that the
optimization of surgical curricula designed to improve tech-
nical skill acquisition would involve experts initially provid-
ing critical context to operative procedure goals. In subse-
quent training sessions, educators would then leverage
quantitative AI error data to deliver action-oriented feed-
back. This study helps provide pathways toward the over-
arching goal of creating an intelligent operating room using
intraoperative intelligent tutoring systems capable of assess-
ing and training learners while minimizing errors during
human surgical procedures.

Limitations
Intelligent tutoring systems on VR simulation platforms do
not encompass the full range of competencies involved in the

dynamic interplay between trainee and educator in the oper-
ating room.36 This study involved small cohorts of junior
medical students with minimal surgical experience from only
4 institutions, limiting the generalizability of the results to
other groups of learners. However, participants’ inexperi-
ence resulted in a steeper learning trajectory, making it easier
to detect trends in their learning curves. Understanding how
medical students can attain AI-derived benchmarks of more
advanced learners has offered insights into the optimization
of surgical intelligent tutoring systems.9-13 Although studies
involving neurosurgical residents are in preparation, the lim-
ited number of available residents may result in an inability
to achieve sufficient power to detect statistically significant
differences. Finally, the applicability of these results to
human surgical environments was beyond the scope of this
research project but requires further investigation.

Conclusions
In this RCT, AI-augmented personalized expert instruction
resulted in superior surgical performance and skill transfer
compared with AI tutor instruction. These findings highlight
the importance of human input and active participation in
AI-based surgical training and provide an investigative plat-
form for the further integration of intelligent tutoring sys-
tems in novel student-centered surgical curricula.
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