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ABSTRACT 

Background 

Current practices for teaching surgical technical skills rely on the subjective observations of 

human instructors, underscoring a need for objective instructional methodologies and 

performance assessments that are standardized across teaching institutions. Thus, our team 

developed the Intelligent Continuous Expertise Monitoring System (ICEMS), an artificial 

intelligence (AI) system that uses quantitative data to continuously assesses trainee performance 

and provide real-time verbal feedback. Using the NeuroVR simulation platform, a randomized 

controlled trial from our center found that AI-augmented personalized instruction resulted in 

enhanced ICEMS scores on a simulated subpial resection scenario compared to AI tutor 

instruction and scripted human instruction.  

Objectives 

The objective of this study is to determine whether AI-augmented personalized instruction will 

result in a reduced feedback frequency and be more effective in improving surgical technical 

skill acquisition in a simulated surgical scenario compared to intelligent tutor instruction alone.  

Methods 

The number of feedback instructions that resulted from each instructional method was extracted 

from the ICEMS and analyzed. Feedback focused on 6 predetermined, AI-derived metrics: 

healthy tissue injury risk, bleeding risk, high instrument tip separation distance, high force 

applied with the bipolar forceps, low force applied with the bipolar forceps, and high force 

applied with the ultrasonic aspirator. In addition, participant performance was assessed through 

technical skill performance metrics, recorded by the NeuroVR simulation platform, including the 

rate of healthy tissue removal (mm3/t), total volume of blood lost (mm3), instrument tip 
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separation distance (mm), force applied with bipolar forceps (N), and force applied with 

ultrasonic aspirator (N). The mean of each performance metric was calculated for each repetition 

of the simulated scenario.  

Results 

The analysis included 522 practice scenarios and 87 realistic scenarios. By the third repetition of 

the practice scenario, the AI-augmented personalized instruction group received significantly 

fewer total instructions (incidence rate ratio (IRR), 1.50 [95% CI, 1.16 to 1.94] instructions; P < 

.001), and instructions relating to high aspirator force application (IRR, 1.71 [95% CI, 1.15 to 

2.55] instructions; P = .002) compared to the second repetition. Compared to AI tutor instruction, 

AI-augmented personalized instruction resulted in improved technical skill performance, 

including a significantly lower rate of healthy tissue removal (P = .01), instrument tip separation 

distance (mean ratio, 1.25 [95% CI, 1.05 to 1.50] mm; P = .008), and aspirator force (mean ratio, 

1.68 [95% CI, 1.23 to 2.31] N; P < .001) by the third repetition of the practice scenario. The AI-

augmented personalized instruction group showed a significant improvement from baseline in all 

subsequent repetitions for all five performance metrics. 

Conclusion 

Artificial intelligence-augmented personalized instruction resulted in less frequent feedback and 

an improvement in simulated surgical skills, providing further evidence for the critical role that 

human educators play in an intelligent operating room environment.   
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RÉSUMÉ 

Contexte 

Les méthodes courantes d’enseignement des compétences techniques chirurgicales sont fondées 

sur les observations subjectives des instructeurs humains. Cela souligne l’importance des 

méthodologies pédagogiques objectives et des évaluations de la performance standardisées dans 

l’ensemble des établissements d'enseignement. Ainsi, notre équipe a développé l’Intelligent 

Continuous Expertise Monitoring System (ICEMS), un système d’intelligence artificielle (IA) 

qui utilise des données quantitatives pour évaluer les performances des stagiaires en continu et 

pour fournir des instructions verbales en temps réel. Avec l’aide de la plateforme de simulation 

NeuroVR, un essai contrôlé randomisé mené par notre centre a démontré que des instructions 

personnalisées augmentées par l'IA entraînaient de meilleurs résultats d’ICEMS dans un scénario 

simulé de résection sous-piale, comparativement aux instructions fournies par un tuteur IA et aux 

instructions humaines scriptées. 

Objectifs 

L’objectif de cette étude est de déterminer si des instructions personnalisées augmentées par l'IA 

entraîneront une réduction dans la fréquence de rétroactions et amélioreront, avec plus 

d’efficacité, l’acquisition des compétences techniques chirurgicales dans un scénario chirurgical 

simulé, comparativement aux instructions fournies uniquement par un tuteur IA.  

Méthodes 

Le nombre de rétroactions générées par chaque méthode d'enseignement a été extrait de 

l’ICEMS et analysé. Les instructions étaient concentrées sur six indicateurs prédéterminés, 

dérivés de l’IA : le risque de lésion des tissus sains, le risque de saignement, la distance de 

séparation élevée des pointes des instruments, une force trop élevée appliquée avec la pince 
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bipolaire, une faible trop force appliquée avec la pince bipolaire et une force trop élevée 

appliquée avec l'aspirateur à ultrasons. De plus, les performances des participants ont été 

évaluées à l’aide d’indicateurs de compétences techniques, enregistrées par la plateforme de 

simulation NeuroVR, notamment : le taux d'élimination des tissus sains (mm3/t), le volume total 

de sang perdu (mm3), la distance de séparation des pointes des instruments (mm), la force 

appliquée avec une pince bipolaire (N) et la force appliquée avec un aspirateur à ultrasons (N). 

La moyenne de chaque mesure de performance a été calculée pour chaque répétition du scénario 

simulé.  

Résultats 

L’analyse comprenait 522 scénarios d’entraînement et 87 scénarios réalistes. Dès la troisième 

répétition du scénario d’entraînement, le groupe recevant des instructions personnalisées 

augmentées par l'IA avait reçu une diminution significative du nombre de rétroactions (rapport 

de taux d'incidence (TRI) 1,50 [IC de 95 % 1,16 à 1,94] instructions ; p < 0,001), ainsi que moins 

de rétroactions concernant l’application d'une force d'aspiration excessive (TRI 1,71 [IC de 95 % 

1,15 à 2,55] instructions ; p = 0,002) comparativement à la deuxième répétition. Par rapport aux 

instructions fournies par le tuteur IA, nous avons observé une amélioration des performances 

techniques, notamment : une réduction significative du taux d'élimination des tissus sains (p = 

0,01), de la distance de séparation des pointes des instruments (rapport moyen 1,25 [IC de 95 % 

1,05 à 1,50] mm ; p = 0,008) et de la force d'aspiration (rapport moyen 1,68 [IC de 95 % 1,23 à 

2,31] N ; p < 0,001) lors de la troisième répétition du scénario d’entraînement. Le groupe ayant 

reçu des instructions personnalisées augmentées par l'IA a montré une amélioration significative 

par rapport à la ligne de base pour les cinq indicateurs de performances, au cours des répétitions 

suivantes. 
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Conclusion 

L’instruction personnalisée augmentée par l'intelligence artificielle a entraîné une diminution 

significative du nombre de rétroactions fournies aux stagiaires ainsi qu’une amélioration des 

compétences chirurgicales en simulations, apportant des preuves supplémentaires qui illustrent le 

rôle essentiel des éducateurs humains dans un environnement opératoire intelligente.  
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INTRODUCTION  

Being one of the most perilous, dynamic medical fields, the surgical domain is associated with 

medical errors.3–10 Patient outcomes depend on a surgeon’s technical and non-technical skills,8–21 

particularly in the field of neurosurgery, where errors can result in significant patient morbidity 

and mortality.9,10,13,22–26 Due to the correlation between surgical errors and complication rates, a 

greater emphasis has been placed on assessing performance throughout surgical residency 

programs by defining measurable competencies.27,28 These program curricula are shifting from 

the traditional, Halstedian, time-based approach towards the adoption of a competency-based 

medical education (CBME) curriculum.29,30 However, assessing these competencies has proven 

difficult due to a lack of standardized, structured assessments.11,27,31 Global rating scales, such as 

the Objective Structured Assessment of Surgical Technical Skill (OSATS),32 have been adopted; 

however, they have been criticized for their reliance on qualitative data, introducing subjectivity 

and bias due to the variability between individual educators.33 

Innovations such as virtual reality (VR) simulators have shown great potential in addressing 

these limitations.34–40 By replicating the visual, auditory, and haptic feedback of particularly 

challenging procedures, VR provides an immersive, controlled environment that can effectively 

prepare trainees before they enter the operating room.13,28,36–38,41 Virtual reality simulators 

capture large amounts of quantitative performance data in real-time, much of which cannot be 

assessed by human instructors, such as the economy of movement or volume of blood lost.34 And 

yet, these systems still tend to rely on human instructors to assess trainee performance and 

provide feedback, maintaining the aforementioned issue of subjectivity.34,41 Feeding this data 

into artificial intelligence (AI) technologies opens the door to the objective, structured 

assessment of skills and logging of performance overtime.18,42–46 AI systems can identify deficits 

in trainee performance and provide actionable feedback accordingly, thereby supplementing 
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current surgical teaching practices.41–43,47,48 Our team has designed one such intelligent tutoring 

application, which can be integrated into a VR surgical platform to train bimanual psychomotor 

skills.47  

The Intelligent Continuous Expertise Monitoring System (ICEMS) uses a long short-term 

memory (LSTM) network to continuously assess trainee performance in 0.2-second intervals and 

provide continuous, real-time verbal feedback to improve trainee performance and mitigate 

errors.47 It has been validated for its ability to assess performance,47 and outperformed human 

expert instructors in teaching technical skills on a neurosurgical simulation platform, validating 

it’s use as an intelligent tutoring system.42 However, studies have suggested that combining 

intelligent tutors with human instructors may be beneficial, as human instructors can 

contextualize the errors identified by the algorithm.41,49 A recent randomized controlled trial 

(RCT) sought to investigate this combination; however, the study focused on the ICEMS’s 

performance assessment, rather than other aspects of trainee performance.50 This thesis aims to 

investigate the impact of AI-augmented personalized instruction on the frequency of feedback 

instructions provided and on trainee technical skill performance. These findings can be used to 

inform the adoption of AI performance assessment and intelligent tutoring functionalities into 

existing surgical residency program curricula.  

BACKGROUND 

Instructional Methods in Surgical Education 

Situational awareness, technical skills, and interpersonal skills are only some of the factors that 

make up a well-rounded, expert surgeon.8–21 The ability to draw on large bodies of knowledge, 

confront uncertainty, and problem solve are key to positive patient outcomes and delivering safe, 

high-quality care.8,11,12,17–21 There is a strong association between the application of these skills 
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and surgical outcomes8–10,12,13,20,21; surgery sees a high rate of preventable complications, and 

many of these are due to surgical errors.3–10 A lack of technical skills has been linked with poor 

surgical outcomes,8–10,12,13 accounting for approximately 25% of surgical complication rates.10 

Furthermore, the United States sees up to 98 000 annual deaths due to preventable medical 

errors.51 In addition to these findings, up to 42% of residents don’t feel adequately prepared to 

perform procedures on their own27,52,53; the 80-hour work week restriction limiting the diversity 

of cases they’re exposed to.6,27 Therefore, it is imperative that residents demonstrate competence 

in order to be prepared for independent clinical practice.29 This is particularly important in 

neurosurgery, as these highly invasive procedures are especially vulnerable to medical errors.26 

For instance, a prospective study investigating errors in neurosurgical procedures found that 75% 

were preventable.22 The surgical field has seen some significant innovations, ranging from the 

discovery of anesthesia to surgical robotics. However, the methods for teaching surgical residents 

have remained mostly unchanged.16,27  

Surgical residency was founded in 1890 at Johns Hopkins Hospital by Dr. William Halsted based 

on the “see one, do one, teach one” approach.54 In this model, trainees observe an attending 

surgeon’s performance, then are expected to perform the operation based on what they learned, 

and afterwards teach their peers these skills.27,29 The approach is based on apprenticeship, where 

trainees work closely with an expert surgeon gaining incremental responsibility, and it is 

assumed that an accumulation of knowledge (ie, a longer time spent practicing) inherently means 

better surgical skills, though this is not always necessarily the case.34,37,55 This method of training 

surgical residents has been criticized, as it involves on-the-job training of residents while in the 

operating room, posing a potential risk to patient safety and ethical concerns.6,30,31,34,40,56 This is 
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especially so given the abundance of alternative methods for skill development that are currently 

available.30 

The modern paradigm follows a CBME model, which necessitates that residents reach a certain 

level of competency before progressing in their surgical residency program.29,30 Defined learning 

objectives guide residents in their skill development.29,30 In Canada, CBME is implemented 

through the Competence by Design (CBD) model.57 Effective, personalized coaching, 

specifically in-the-moment coaching. has been identified as a critical component to the success 

of CBD.57–59 It is supported by a detailed framework that facilitates conversations between 

learners and instructors, known as the R2C2 model.59 Despite this push for improved feedback 

and guidance, surgical teaching methodologies remain very similar to the apprenticeship model, 

wherein residents continue to receive the majority of their training in the operating room, with 

the added aspects of in-the-moment coaching and formally assessing trainee performance before 

entrusting them with further responsibilities.27,60 In this approach, residents may be limited in the 

diversity of cases they see,27,61 and training relies on the presence of an instructor, limiting how 

often trainees can practice and demanding a lot of time from attending surgeons whose 

secondary focus is the resident’s learning – the primary being providing quality care to their 

patients.27,60 The risk posed to patient safety also remains.30,31,34 Therefore, there is a clear need 

to expand surgical teaching methods beyond the confines of the operating room.  

Studies have shown that a variety of instructional methods should be used when teaching 

surgical trainees, such as learning by performing tasks, self-reflection, modelling behaviours of 

experienced surgeons, self-directed study, and more.62 However, in practice, the limitations 

imposed by learning in the operating room make these approaches incompatible to the current 



 21 

teaching paradigm, as implementing these methods introduces concerns of time constraints and 

patient safety.62–64 

Previous research has also supported the concept of deliberate practice,13,29,35,55,65,66 wherein 

trainees practice technical skills through tasks with well-defined goals while receiving real-time 

feedback to improve their performance.55 For the practice to be deliberate, there must be the 

opportunity to continually train, repeating the task many times to refine performance, and 

overtime be faced with new challenges to overcome.55 This method of skills acquisition involves 

complex cognitive processes that help trainees avoid becoming automated in how they perform a 

task, and they instead veer towards mastery.55 The use of these principles is not evident in 

teaching practices in the human operating room due to difficulties in applying these systems in 

these complex surgical environments. Repeating steps is difficult since prolonging a procedure 

for teaching purposes creates unnecessary risks to patient safety.63,64 Furthermore, deliberate 

practice requires trainees to challenge themselves,55 but applying this facet in the human 

operating room would involve a resident attempting to deal with an operative issue that may be 

above their current ability, introducing another potential for patient harm.13 To bypass these 

limitations and allow surgical residents to benefit from the application of deliberate practice, 

surgical simulators can be employed. Simulators provide a risk-free environment where trainees 

can be assessed on specific criteria, receive real-time feedback, refine challenging techniques, 

and repeat a task indefinitely.13,28,36,55,56,61 In addition, simulators lend themselves well to the 

current surgical education curriculum, as they provide a platform for CBD in-the-moment 

coaching without necessitating the presence of a human instructor. 
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Simulation in Surgical Education  

Simulation involves the reproduction of real-life experiences, immersing the user in the 

simulation environment.13,36,67 It has proven to be useful for training in many domains, such as 

aviation training,68 though its applications in the surgical field are only beginning to be 

developed.69 Simulation can allow trainees to acquire skills in a risk-free, controlled 

environment, rather than in the operating room.13,34,36,41,55 A large benefit of simulators is their 

ability to be assessed for face and content validity (ie, realism of the simulation setting and how 

applicable the system is as a teaching tool, respectively).34 Validated simulators can be used for 

training essential surgical skills, decreasing the emphasis placed on training done in the operating 

room if adequate alternative models are available.  

Simulation includes live animal models, human cadaver models, synthetic models, and VR 

systems.34,70 Applications of all these models have been created for teaching surgical residents, 

but most of their training is still done on patients in the operating room.60 Live animal models 

include in vivo and ex vivo models.70 These are considered high-fidelity simulations, as the 

biological tissue is similar to that of a human, so trainees can practice all aspects of an 

operation.70 However, they come with disadvantages, most notably their high costs, limitations in 

repetition, and ethical concerns.70 Human cadavers are considered the gold standard for surgical 

simulation due to their high-fidelity.70 However, these models may not always be conducive for 

practicing certain procedures (eg, decreased tissue quality in embalmed cadavers), are expensive 

to obtain and maintain, have limited availability, and are not re-usable.70 Furthermore, synthetic 

simulators, such as benchtop and laparoscopic box simulators and manikins are typically low-

fidelity, with new developments creating more high-fidelity options.70 The utility of these models 

in developing surgical skills has been proven numerous times, and they are currently used in 
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many surgical training curricula, though these, too, have their limitations.70 High-fidelity 

synthetic models are expensive and not readily available, while low-fidelity options 

predominately focus on individual techniques, rather than the interaction of many skills.34,70 

Surgical competence requires that residents are able to apply multiple skills simultaneously; an 

expert does not usually focus on a solitary skill while operating.8,15,17–19,30 Additionally, both 

high- and low-fidelity synthetic models are just that – synthetic – meaning their realism is 

inherently limited.70 Finally, VR simulators create realistic, immersive environments in which 

trainees can practice a variety of procedures on a single system.70 They allow for the repetition of 

a procedure and are often considered high-fidelity, as the trainee manipulates realistic, computer-

generated images while receiving haptic feedback.67,70 These systems entirely remove the risk to 

patients,13,14,29,34,36,41 allowing trainees to focus on their technical skill development, address their 

weaknesses, and challenge themselves by attempting more complex procedures.13,36,39,41,55 They 

have proven to be useful in improving surgical skills in a variety of surgical fields.34,42,43 Virtual 

reality simulators also collect performance data, allowing for objective and quantitative 

assessment and eliminating the need for supervision; trainees can receive feedback from the 

simulator itself.34,40,42–46,71 The main disadvantage of VR simulation is its high cost; however, 

these systems are becoming more and more cost-effective as new research developments are 

made.40,70 

Simulation in Neurosurgical Education  

Of all the surgical fields, neurosurgery is known for being particularly high stakes, as even small 

errors can result in significant patient morbidity and mortality.9,10,13,22–25 This characteristic 

makes this specialty a good candidate for the development of simulation-based training of 

technical skills. Trainees can practice outside of the high-stakes operating room environment, 
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creating an optimal setting for deliberate practice while mitigating patient harm. As such, our 

team has developed and validated VR and ex vivo neurosurgical simulators.72–75 

The NeuroVR (CAE Healthcare, Montreal, Canada), developed by a team of researchers at the 

National Research Council Canada, is a high-fidelity, VR simulator that recreates the audiovisual 

and haptic experience of neurosurgical procedures.72,76 Offering interactive neurosurgical and 

spinal procedures, the NeuroVR includes realistic anatomical structures, haptics, and physical 

and physiological responses that allow for a more immersive training experience.72 The system 

consists of a microscope, which allows for 3D visualization, as well as two instruments – bipolar 

forceps and an ultrasonic aspirator – attached to haptic handles and activated by foot pedals.72 

The ultrasonic aspirator is used by a trainee to suction blood and resect the abnormal tissue, 

while the bipolar forceps allow for better visualization of the surgical field and can be used to 

cauterize bleeding points.72 By consulting with expert neurosurgeons, the NeuroVR’s face and 

content validity has been established. In addition, it’s construct validity has been determined 

through the use of machine learning to evaluate simulator data.48,73,76 

A subpial resection procedure involves the use of bipolar forceps to retract the pia mater in order 

to then resect abnormal tissue using an ultrasonic aspirator.77 The NeuroVR houses two scenarios 

for this procedure: a simpler practice scenario used to acquire the necessary technical skills for 

this technique (Figure 1), and a realistic scenario to assess the transfer of these skills to a more 

complex procedure (Figure 2). In these scenarios, trainees must remove the glioma-like abnormal 

tissue while minimizing bleeding and damage to the surrounding healthy tissue. 

Virtual reality simulators such as the NeuroVR are limited by the fact that they cannot fully 

replicate the sensation of handling biological tissue.71 As such, an ex vivo model was developed 

by our group to provide a more realistic setting for trainee learning, while still maintaining a 
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risk-free environment.75 This model utilizes a calf brain – an affordable and available model that 

is anatomically similar to a human pediatric brain.75 This model has previously demonstrated 

face and content validity.75 

Performance Assessment in Surgery 

The modern paradigm for surgical residency training follows the CBME model, wherein 

residents are required to meet defined learning objectives to progress in their training and prepare 

for independent clinical practice.29,30 In Canada, CBME is implemented through the CBD model, 

and these competencies are assessed using entrustable professional activities (EPAs).57,78 EPAs 

are key tasks that a resident can be trusted to perform independently once competence has been 

demonstrated.78 A surgical resident’s progress in the residency program is measured by the 

successful completion of these EPAs. EPAs help standardize the assessment of core 

competencies in the CBME model; however, they lack objective, structured, and specific criteria 

for evaluating these domains, making them prone to subjectivity and bias. In addition, EPAs 

generally focus on the successful completion of steps in a procedure, rather than assessing a 

trainee’s grasp of specific, essential technical skills.79,80 

The Objective Structured Assessment of Technical Skills (OSATS) is just one of many global 

rating scales developed to evaluate technical skill performance, often regarded as the gold 

standard.32 Using this scale, evaluators rate seven domains of performance using a Likert scale: 

respect for tissue, time and motion, instrument handling, knowledge of instruments, use of 

assistants, flow of operation and forward planning, and knowledge of specific procedure.32 While 

the OSATS solves the issue of specificity seen with EPAs when evaluating technical skill 

performance,80 indicating set qualities to observe in a trainee’s performance, this reliance on 

qualitative data introduces subjectivity and bias.27,34,62 Although employing multiple evaluation 
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methods from multiple evaluators can be beneficial to a trainee’s development,81 assessments 

relying on qualitative data pose difficulties in generalizing grading across multiple instructors, let 

alone multiple institutions, and may make it difficult for trainees to determine whether their 

performance is improving overtime. Thus, a need for an objective, structured, and specific 

assessment of trainee technical skills is identified.  

Performance Assessment Algorithms  

AI systems are made to simulate human intelligence and reasoning.82 In the case of machine 

learning, a branch of AI, these applications have progressed as far as computers learning and 

acquiring human intelligence by identifying patterns in datasets and predicting outcomes based 

on input data.82 Deep learning is a subset of machine learning, in which multiple neural networks 

simulate human decision making.82 There are three main methods by which machine learning 

algorithms can learn: unsupervised learning, supervised learning, and reinforcement learning.83 

Supervised learning involves feeding labelled data into a machine learning algorithm, allowing it 

to recognize patterns within the dataset to make accurate, informed predictions when provided 

with new data.83 AI has shown great promise in many aspects of the surgical field, including but 

not limited to, predicting patient outcomes,84,85 detecting pathologies,86,87 and surgical skill 

assessment44,45,47 and training.42,43,46,47 

AI has proven to be a valuable tool for finding hidden patterns within datasets, helping 

researchers understand ambiguous findings. This feature is particularly intriguing for surgical 

training, where there is a dearth of objective, quantitative assessments of surgical technical 

skill.11,27,31 Measuring an expert surgeon’s psychomotor skills and understanding the components 

that make up expert-level performance has proven difficult, making assessing these skills and 

teaching them to a novice difficult as well.88 Given that AI can process and analyze large, 
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complex datasets, these algorithms may be helpful in quantifying skills, thereby paving the way 

to the development of objective assessments.  

Difficulties with understanding the decision-making processes of unsupervised machine learning 

algorithms are known as the “Black Box” problem, and they lead to hesitations in integrating AI 

into the surgical field.89 Surgery is a very high stakes setting, thus, not understanding the 

reasoning used by innovative technologies could have detrimental effects to outcomes. This is 

unhelpful when trying to provide feedback to improve trainee performance, as well. However, 

there are methods to circumvent this. Extracting key features of expert performance and feeding 

them into a supervised learning algorithm can allow developers some control over the model’s 

decision making.48,90 These features can be used as benchmarks of expert performance, providing 

specific metrics as a standard of reference against which trainees can be assessed. Using this 

method, our group developed the ICEMS, a deep learning application for assessing surgical 

performance.  

The ICEMS was developed by collecting data from 12 medical students (novices) and 14 

neurosurgeons (experts) performing a subpial brain tumor resection procedure on the 

NeuroVR.47 Subsequently, sixteen performance metrics associated with instrument handling (eg, 

velocity, acceleration) and risk assessment (eg, healthy tissue injury risk) that distinguished 

expert performance from novices were extracted.47 This metric data was then labelled and used 

to train an LSTM model to differentiate expertise level among participants.47 As such, the 

ICEMS quantitatively assesses performance at 0.2-second intervals, providing an expertise score 

ranging from -1.00 (novice) to 1.00 (expert) based on these sixteen metrics.47 The ICEMS has 

demonstrated predictive validity by accurately distinguishing between the surgical performance 

of medical students, junior residents (post-graduate year [PGY] 1 to 3), senior residents (PGY 4 
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to 6), and neurosurgeons.47 The method by which this system was developed allows us to 

understand the logic behind its decision making, making it a practical tool for scoring trainee 

surgical simulation performance. In fact, it has been used to score participant performance in a 

variety of RCTs.42,43 

Intelligent Tutoring Systems 

Intelligent tutoring systems are computer-based systems that leverage AI techniques to provide 

feedback to learners.91,92 These systems can simulate one-one-one learning, helping trainees 

acquire skills and knowledge relevant to their field.91,92 In the medical field, intelligent tutoring 

systems have proven useful in a variety of areas, including clinical reasoning, diagnoses, 

treatment planning, and skills training.91 In surgery, these systems can be used to quantitatively 

assess performance, continuously identify errors, and provide real-time feedback to mitigate 

these errors.46,47 

The Virtual Operative Assistant (VOA) was created by our group in 2020 to teach bimanual 

psychomotor skills.46 By applying a linear support vector machine and AI-derived metrics to 

process NeuroVR performance data, the VOA calculates learner scores and classifies trainee 

performance as expert or novice.46 With this scoring, it provides trainees with instructions to 

improve their performance following their completion of a simulation task.46 The VOA provides 

instructions on four AI-selected metrics: two safety metrics – bipolar forceps force application 

and rate of bleeding, and two instrument movement metrics – instrument tip separation distance 

and bipolar forceps acceleration.46 Trainees are required to master the metrics pertaining to safety 

before moving on to the instrument movement metrics.46 In an RCT, medical students trained 

using the VOA outperformed those taught by a remote human expert instructor, indicating the 

VOA’s utility as a surgical teaching tool.43 However, as previously discussed, principles of 
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deliberate practice suggest that surgical training applications that provide real-time assessment 

and feedback are preferable for learner acquisition of knowledge and skills,55 as they better 

mimic the dynamic operating room environment and trainee-instructor relationship. The VOA 

lacks the ability to continuously assess performance and provide real-time feedback to trainees, 

limiting its pedagogical utility.  

Due to these shortcomings, the ICEMS was developed by our group.47 This application uses an 

LSTM to intraoperatively assess and score trainee NeuroVR performance in five AI-selected 

metrics every 0.2 seconds.47 These metrics consist of two safety metrics – tissue injury risk and 

bleeding risk – and three coaching metrics – instrument tip separation distance, bipolar forceps 

force application, and ultrasonic aspirator force application.47 Using the NeuroVR performance 

data of 14 neurosurgeons, an LSTM established expert benchmarks that could then be used to 

detect errors in trainee performance.47 The system provides real-time, auditory feedback to 

trainees following metric error detection; an error is defined as a trainee’s score differing from 

the expert benchmark by one standard deviation for more than one second.47  

A previous RCT ran by our group demonstrated the educational utility of the ICEMS, as medical 

students taught by the ICEMS outperformed those taught by an in-person expert human 

instructor.42 However, the expert instructors were not provided with AI-derived performance data 

during this trial, relying solely on their observations, making their instructions vulnerable to 

subjectivity. Additionally, a randomized cross-over trial investigated these two teaching methods 

in separate training sessions. Students first learned from the ICEMS or an in-person expert 

instructor before crossing over to receive the other instructional method.93 Trainees who first 

received AI instruction followed by expert instruction showed a decline in their surgical 

performance after the two sessions, while the surgical performance of those taught by an expert 
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instructor before receiving AI instruction significantly improved.93 This study explored the effect 

of the subsequent application of these instructional methods, but not their combination. The 

findings suggest that human expert instruction and AI instruction may each provide trainees with 

knowledge pertaining to different aspects of surgical expertise, pointing to the potential utility in 

combining these two teaching methods. In addition, a cohort study investigating the unintended 

effects of AI instruction on surgical performance showed that intelligent tutoring may lead to 

suboptimal outcomes in several efficiency-related metrics,49 indicating that human experts may 

be necessary to contextualize the feedback provided by intelligent tutoring systems to create an 

optimal learning environment. A recent RCT from our center sought to combine the strengths of 

AI instruction with human expert instruction in a simulation environment. This investigation 

found that AI-augmented personalized instruction enhanced ICEMS scores and resulted in 

improved skill transfer to a more realistic simulated scenario compared to AI tutor instruction 

alone. These results emphasize the critical role that human educators play in AI-based surgical 

teaching.50 However, this study did not investigate the effect of augmenting human instruction 

with AI-derived error data on the frequency of instructions provided and technical skill 

improvement. As such, we aim to assess the pedagogical impact of AI-augmented personalized 

instruction on the frequency of feedback instructions and on the results of these specific surgical 

instructions on trainee surgical performance using the NeuroVR simulation platform. 

RATIONALE 

Proper surgical technical skills are essential for safe operative procedures,8–10,12,13 but they are 

often acquired in high-stakes, stressful environments that are not conducive to methods of 

deliberate practice.6,13,30,31,34,40,55,56 This challenge in surgical resident training is exacerbated by a 

lack of objective, standardized assessments of performance within surgical residency program 
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curricula.11,27,31 Virtual reality simulators combined with intelligent tutoring systems offer a 

promising alternative method for acquiring and assessing surgical skills, and are slowly 

becoming more common for teaching surgical trainees.34–40 A previous study found that AI-

augmented personalized instruction during simulated VR brain tumor resection procedures 

improved trainee surgical performance and skill transfer compared to AI tutor instruction alone.50 

However, this study focused on the ICEMS-derived performance scores and did not consider 

other aspects of performance. Therefore, the effect of this instructional methodology on the 

frequency of feedback instructions and on technical skill performance remains unknown. 

THE STUDY HYPOTHESIS 

Our primary hypothesis is that AI-augmented personalized instruction will lead to a significantly 

lower number of feedback instructions compared with AI tutor instruction. Our secondary 

hypothesis is that AI-augmented personalized instruction will result in superior technical skills 

compared with AI tutor instruction. These hypotheses are based on adult learning theories that 

highlight the importance of personalized learning and contextualization to optimize learning 

outcomes.94–96 

THE STUDY OBJECTIVES 

To the best of our knowledge, there are no previous investigations into the prospect of combining 

AI-derived quantitative data with human expert instruction on the frequency of feedback 

provided to a trainee, nor on the improvement in a trainee’s technical skill performance, in a 

simulation environment.  

Therefore, the first coprimary objective of this thesis is to determine the effect of providing 

human expert instructors with ICEMS quantitative performance data on the number of 

instructions received by each trainee during simulation training. The second coprimary objective 
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is to determine the effect of this same instructional methodology on trainee technical skill level, 

measured by their performance in various metrics recorded by the NeuroVR system.  
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HIGHLIGHTS  

 

• Intelligent tutoring systems result in limited surgical skill improvement 

• Learners acquire simulated surgical skills when taught by human instructors 

• Feedback frequency decreases when personalized instruction is provided 

• Instructions informed by artificial intelligence data improve surgical performance 

 

ABSTRACT  

 

Objective: To determine whether personalized feedback from a human instructor receiving 

artificial intelligence (AI) error data will result in reduced feedback frequency and improvement 

of surgical skill compared to AI instruction. We hypothesized that AI-augmented personalized 

instruction would result in reduced feedback frequency and improvement in technical skill. 

 

Design: This cross-sectional cohort study was a follow-up of a randomized controlled trial. 

Participants were stratified by year in medical school and block randomized to receive one of 

three educational interventions as they performed simulated procedures on the NeuroVR: AI 

tutor instruction, scripted human instruction, and AI-augmented personalized instruction. 

Performance was assessed by the feedback frequency and technical skill performance metrics. 

ClinicalTrials.gov ID: NCT06273579. 

 

Setting: Neurosurgical Simulation and Artificial Intelligence Learning Centre, McGill 

University, Montreal, Canada. 
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Participants: Volunteer sample of medical students from four Quebec universities in 

preparatory, first, or second year without prior use of the NeuroVR. Eighty-eight students 

participated in the study with 87 included in the final analysis; one was excluded due to technical 

issues. 

 

Results: By the third repetition, the AI-augmented personalized instruction group received 

significantly fewer total instructions (incidence rate ratio [IRR], 1.50 [95% CI, 1.16 to 1.94] 

instructions; P < .001), and high aspirator force instructions (IRR, 1.71 [95% CI, 1.15 to 2.55] 

instructions; P = .002), compared to the second repetition. Compared to AI tutor instruction, AI-

augmented personalized instruction resulted in a significantly lower rate of healthy tissue 

removal (P = .01), instrument tip separation distance (mean ratio, 1.25 [95% CI, 1.05 to 1.50] 

mm; P = .008), and aspirator force (mean ratio, 1.68 [95% CI, 1.23 to 2.31] N; P < .001). AI-

augmented personalized instruction showed a significant improvement from baseline in all 

subsequent repetitions for all performance metrics.  

 

Conclusions: This cohort study demonstrated that AI-augmented personalized instruction 

resulted in less frequent feedback and an improvement in simulated surgical skills. 

 

KEYWORDS: artificial intelligence-augmented instruction; surgical simulation; surgical 

education; technical skill; neurosurgical virtual reality, performance metrics  
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INTRODUCTION 

 

Mastery of surgical technical skill is essential to mitigate the risk of surgical errors.8–10,12,13 The 

current pedagogical model for surgical training involves the constant interplay between the 

educator and the trainee in a dynamic operative environment.60 These real-time communications 

rely on the subjective observations of human instructors for continuous assessment and 

immediate, personalized, actionable feedback to guide technical skill development and error 

mitigation.34 This reliance on subjective, qualitative performance data highlights a lack of 

objective, standardized instructional methodologies and assessments of surgical trainee 

performance.11,27,31,34 Intelligent tutoring systems utilizing artificial intelligence (AI) to provide 

personalized and adaptive instructions to learners may help overcome these limitations due to 

their capacity to process and analyze large quantities of data to objectively assess 

performance.42–47  

 

Intelligent tutoring systems have shown potential in teaching trainees surgical techniques and 

evaluating their competency using a data-driven approach in simulation environments.42,43,97 A 

randomized controlled trial (RCT) utilizing the Virtual Operative Assistant intelligent tutoring 

system, employing only post-hoc AI feedback, significantly improved simulated surgical 

performance.43,46 This system lacks the capacity to continuously monitor intraoperative skills or 

provide real-time feedback. The Intelligent Continuous Expertise Monitoring System (ICEMS) is 

a multi-algorithm AI system specifically designed to address these issues by employing 

quantitative data to continuously assess trainee performance and provide instructions to mitigate 

and reduce trainee errors based on real-time risk detection.47 Developed using a long short-term 

memory network and based on objective, AI-derived metrics, the ICEMS can be used to detect 
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errors in surgical performance.47 The ICEMS was trained on neurosurgeons’ (experts) and 

medical students’ (novices) operative data and demonstrated a granular differentiation across 

levels of expertise, and has shown face, content, construct, and predictive validity.47,98 The 

NeuroVR, a high-fidelity virtual reality (VR) surgical simulator equipped with haptic feedback 

for brain tumor resection procedures, was used to develop the ICEMS.72 The ICEMS can be 

applied to any simulation system.47 

 

An RCT demonstrated that the ICEMS improved simulated surgical performance more than 

skilled instructors, indicating the pedagogical utility of the system.42 Another crossover RCT 

found that trainee performance was significantly improved when instructed by a skilled educator 

first and then followed by ICEMS instruction.97 Although this intelligent tutoring system can 

provide objective feedback, it is limited to delivering specific verbal instructions, while human 

educators can provide context and personalize their feedback. In a previous cohort study, this 

limited variety of possible feedback instructions led to unintended outcomes in an AI-enhanced 

curriculum, which negatively impacted trainee performance efficiency.49 The results of these 

studies suggest that combining a skilled instructor and an AI tutor would allow for the 

contextualization of AI error data and optimize trainee performance. A recent RCT from our 

center found that AI-augmented personalized instruction resulted in enhanced ICEMS scores on 

a simulated subpial brain tumor practice resection scenario compared to AI tutor instruction and 

scripted human instruction, along with an improved transfer of surgical technical skills to a 

realistic simulated scenario.50 These results highlight that personalized expert instruction results 

in enhanced surgical performance and skill transfer compared with intelligent tutor instruction, 
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emphasizing the critical role of human engagement and contribution in artificial intelligence-

based surgical training.  

 

However, this study did not investigate how AI-augmented personalized expert instruction 

influenced the frequency of feedback instructions, nor the differences in trainee technical 

performance between groups. Our study aimed to investigate these two components. We 

hypothesized that participants receiving AI-augmented personalized instruction would (1) 

receive a significantly lower number of feedback instructions compared to those receiving AI 

tutor instruction, and (2) show a significantly better response to these instructions through 

improvement in technical skill performance compared to those receiving AI tutor instruction. 

 

METHODS 

 

Participants  

 

We conducted a planned secondary analysis using retrospective data from a previous RCT 

involving 87 medical students at the Neurosurgical Simulation and Artificial Intelligence 

Learning Centre, McGill University, Montreal, Canada from March to September 2024.50 

Students were recruited for a single 90-minute surgical simulation session with no follow-up. 

Medical students enrolled in their preparatory, first, or second year at one of four Quebec 

institutions were considered eligible for the study. The exclusion criterion was previous 

experience with the NeuroVR, the VR simulator used in this study. A sample size calculation 

with a power of 0.9, an effect size of 0.3, an α error probability of 0.05, and a correlation among 

repeated measures of 0.5 resulted in a total of 87 participants, with 29 participants in each of 
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three groups. Each participant performed the same simulated procedure with a different 

instructional method. This study was approved by the McGill University Health Centre Research 

Ethics Board, Neurosciences-Psychiatry and was registered on ClinicalTrials.gov on February 

16, 2024 (NCT06273579). All participants signed an approved informed consent form prior to 

commencing the study. This report follows the Strengthening the Reporting of Observational 

Studies in Epidemiology (STROBE)99 guidelines for cohort studies and the Machine Learning to 

Assess Surgical Expertise (MLASE) checklist.100 

 

Study Procedure and Simulation Session 

 

Following voluntary enrollment, students were stratified according to year in medical school and 

block randomized to one of three intervention arms with a 1:1:1 allocation ratio. All participants 

received standardized written and verbal instructions outlining the use of the instruments, the 

goal of the task, and how the session would proceed. Students were blinded to the trial’s purpose 

and assessment metrics. The study utilized the NeuroVR (CAE Healthcare, Montreal, Canada), a 

validated, high-fidelity VR neurosurgical simulator, on which participants performed simulated 

subpial brain tumor resection procedures.72,73 The simulation tasks involved the use of an 

ultrasonic aspirator and bipolar forceps, each equipped with haptic feedback, to completely 

resect a simulated tumor while minimizing bleeding and damage to non-pathological tissue.48,101 

All participants completed six 5-minute practice subpial resection scenarios to assess their 

learning (Figure 1), followed by a 13-minute realistic scenario to assess skill transfer to a more 

complex procedure (Figure 2). Between each repetition, a rest period of five minutes was 

afforded to participants.74,102 
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Interventions 

 

Participants performed their first practice resection scenario without feedback to establish their 

baseline performance level. The second to fifth repetitions of the practice scenario served as a 

formative assessment, during which participants received feedback only when an error was 

identified by the ICEMS. Feedback methods differed between the three groups. Participants then 

proceeded to perform a sixth repetition of the practice scenario without feedback as a summative 

assessment of their performance. Trainees then completed one repetition of the realistic scenario 

to assess skill transfer to a more complex scenario. The study procedure is outlined in Figure 3. 

Participants and instructors were blinded to group assignments and study outcomes. 

 

The instructors were senior neurosurgical residents with experience in clinical and simulated 

subpial resection procedures. A senior neurosurgical consultant with extensive involvement in 

VR neurosurgical simulation and clinical subpial operations identified these instructors as 

competent to train novices during these simulated procedures. 

 

Group 1: AI Tutor Instruction 

 

Group 1 received real-time verbal feedback from the ICEMS upon metric error detection.  

 

Group 2: Scripted Human Instruction 
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Group 2 received instructions from one of two neurosurgical residents (M.A., post-graduate year 

[PGY] 5; A.K.A., PGY 4) upon metric error detection by the ICEMS. Prompted by the ICEMS 

using colored indicators, instructors provided real-time verbal feedback using the same wording 

as the ICEMS (Table 1). 

 

Group 3: AI-Augmented Personalized Instruction 

 

Group 3 received instructions from a neurosurgical resident (A.A., PGY 4) upon metric error 

detection by the ICEMS. Prompted by the ICEMS using colored indicators, the instructor 

provided real-time personalized verbal feedback in their own words based on the trainee’s 

manipulations.  

 

Instructions were provided based on pre-selected metrics: healthy tissue injury risk, bleeding 

risk, instrument tip separation distance, bipolar forceps force, and ultrasonic aspirator force. The 

metrics followed a hierarchy, as employed in previous studies; if more than one error occurred 

simultaneously, instructions for the metric higher in the hierarchy would be prioritized.42,47 The 

feedback instructions provided in groups 1 and 2 and the hierarchical order of these metrics are 

outlined in Table 1.  

 

Performance Metric Extraction 

 

During the second to fifth repetitions, the ICEMS recorded the number of instructions given for 

each ICEMS metric: healthy tissue injury risk, bleeding risk, high instrument tip separation 
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distance, high bipolar force, low bipolar force, and high aspirator force.42,47 Following the 

completion of a repetition, the number of instructions given to a participant in total and for each 

metric was summed. The average number of instructions was calculated for each group for each 

formative repetition of the practice scenario. During every repetition, the NeuroVR recorded 

participant technical skill performance data in 20-millisecond increments (50 recordings per 

second; t = 20 ms), including rate of healthy tissue removal (mm3/t), total volume of blood lost 

(mm3), instrument tip separation distance in the 3D space (mm), force applied with bipolar 

forceps (N), and force applied with ultrasonic aspirator (N).103 These performance metrics were 

selected based on their relation to the feedback instructions given during the session to assess 

their effectiveness. The raw data were collected, and an average of 4 of the technical skill 

performance metrics was calculated for each participant in each repetition. Only the final value 

of total blood volume lost was utilized for each repetition, rather than taking an average. AI 

tutor-automated feedback provision and data visualization were performed using MATLAB (The 

MathWorks Inc., Natick, Massachusetts, USA) release 2024b.  

 

Outcome Measures 

 

The first coprimary outcome of this study was the number of instructions that trainees received 

in total and for each ICEMS metric during each of the formative practice subpial resection 

scenarios. The second coprimary outcome was trainee technical skill performance during the 

practice scenarios and realistic scenario, measured using the five performance metrics recorded 

by the NeuroVR. 
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Statistical Analysis 

 

Between- and within-group comparisons of the mean number of feedback instructions received 

over the second to fifth repetitions of the practice resection scenario were conducted using 

generalized linear mixed (GLMM) Poisson regression models for count data. Model assumptions 

and the presence of possible outliers or influential observations were investigated using graphical 

analyses of simulated residuals. Post-hoc pairwise comparisons were adjusted using the Šidák 

method for between-group differences and the Bonferroni correction for within-group 

differences. Results are reported as incidence rate ratios (IRR) and 95% confidence intervals 

(CI). 

 

Between-group comparisons of the mean values of the technical skill performance metrics at 

each repetition of the practice resection scenario were conducted using a two-way mixed model 

analysis of variance (ANOVA). Repeated measures ANOVA was used to investigate within-

group differences of the mean values of the technical skill performance metrics at each repetition 

of the practice resection scenario. One-way ANOVA was used to compare the mean values of 

each technical skill performance metric in the realistic resection scenario. Assumption of errors 

of ANOVA models, including normality, homogeneity of variance, and the presence of possible 

outliers or influential observations were assessed by graphical examination of model residuals. 

Post-hoc pairwise comparisons of mean differences were adjusted using the Šidák method for 

between-group differences and the Bonferroni correction for within-group differences. When 

model residuals did not show evidence of having a Normal (Gaussian) distribution, a natural 

logarithmic transformation of the values was used as the model outcome to stabilize the 
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variability. A robust linear mixed model approach to the ANOVA was used when the assumption 

of homogeneity of variance or residuals was violated. In cases where the normality or 

homogeneity of variance assumptions were drastically violated, we used the Kruskal-Wallis test 

at each repetition for between-group analysis, followed by Dunn’s test with Bonferroni 

correction for multiple comparisons, and the Friedman test was used for within-group analysis, 

followed by the Nemenyi test. Results are reported as estimated mean differences and 95% CI 

and, in cases where a log transformation was used, as estimated ratios of geometric means and 

95% CI. 

 

Data analysis was performed using R Statistical Software (v4.3.3; R Core Team 2024)104 from 

February to May 2025. All codes were written by the authors. ANOVAs and Poisson GLMM 

were implemented using the lme4 105 and glmmTMB 106 R packages, respectively. The GLMM 

analysis of simulated residuals was implemented using the DHARMa R package.107 The robust 

linear mixed model approach to ANOVA was done using the robustlmm R package.108 

 

RESULTS  

 

Eighty-eight medical students from four Quebec universities participated in the study. 

Participants were stratified according to year in medical school and block randomized to one of 

three groups. There were 31 students in the AI tutor instruction group (group 1), 29 in the 

scripted human instruction group (group 2), and 28 in the AI-augmented personalized instruction 

group (group 3). Due to technical issues that arose during the simulation session, data from one 

participant in group 1 were excluded from the analysis. Data from 87 participants (46 [53%] 
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women, 40 [46%] men, 1 [1%] unspecified; mean [SD] age, 22.7 [4.0] years) were available for 

analysis, including 522 practice scenarios and 87 realistic scenarios (Table 2). 

 

Feedback Frequency Across Simulated Practice Subpial Resections 

 

All groups began receiving instructions in the second repetition of the practice scenario. In total, 

over the second to fifth repetitions, group 1 received 1464 instructions, group 2 received 1183 

instructions, and group 3 received 728 instructions. Figure 4 outlines the number of instructions 

received by the groups for each metric in each repetition of the practice scenario where feedback 

was given (repetitions 2 to 5). The incidence rates of instructions for each metric can be found in 

Table 3. Group 1 (378 instructions) received significantly more instructions in total compared to 

group 3 (262 instructions) by the second repetition (IRR, 1.52 [95% CI, 1.03 to 2.23] 

instructions; P = .03). Group 2 (308 instructions) received significantly more feedback 

instructions in total compared to group 3 (175 instructions) by the third repetition of the practice 

scenario (IRR, 1.74 [95% CI, 1.15 to 2.63] instructions; P = .001) (Figure 5A). Pertaining to 

bleeding risk instructions, group 1 (54, 46, and 61 instructions, respectively) received 

significantly more feedback compared to group 3 (17, 16, and 13 instructions, respectively) in 

the second (IRR, 5.55 [95% CI, 1.22 to 25.15] instructions; P = .01), fourth (IRR, 5.02 [95% CI, 

1.09 to 23.19] instructions; P = .03), and fifth (IRR, 8.20 [95% CI, 1.73 to 38.77] instructions; P 

= .001) repetitions, and group 2 (46 and 49 instructions, respectively) received significantly more 

feedback than group 3 (17 and 13 instructions, respectively) in the second (IRR, 4.89 [95% CI, 

1.06 to 22.53] instructions; P = .04) and fifth (IRR, 6.81 [95% CI, 1.41 to 32.80] instructions; P 

= .006) repetitions (Figure 5C). Group 1 (97 instructions) received significantly more 
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instructions relating to high bipolar force than group 3 (43 instructions) in the fourth repetition of 

the practice scenario (IRR, 2.13 [95% CI, 1.03 to 4.39] instructions; P = .04) (Figure 5E). By the 

fourth repetition of the practice scenario, groups 1 (113 instructions) and 2 (111 instructions) 

both received significantly more high aspirator force feedback instructions than group 3 (51 

instructions; IRR, 1.99 [95% CI, 1.10 to 3.61] instructions; P = .01; and IRR, 2.13 [95% CI, 1.17 

to 3.87] instructions; P = .004, respectively) (Figure 5G). Only group 3 received significantly 

fewer instructions across repetitions of the practice scenario. By the third repetition, this group 

received significantly fewer total instructions (175 instructions; IRR, 1.50 [95% CI, 1.16 to 1.94] 

instructions; P < .001) and instructions relating to aspirator force (70 instructions; IRR, 1.71 

[95% CI, 1.15 to 2.55] instructions; P = .002) compared with the second repetition (262 and 120 

instructions, respectively; Figure 5A and 5G). 

 

Technical Skill Performance Across Simulated Practice Subpial Resections 

 

Learning curves were assessed for the five technical skill performance metrics. The estimates for 

each metric analyzed using parametric statistical methods can be found in Table 4. No 

statistically significant differences were observed between the groups at baseline performance 

(first repetition) in all five performance metrics. Dunn’s tests with Bonferroni correction 

indicated that group 3 demonstrated a significantly lower rate of healthy tissue removal 

compared to group 1 by the third (P = .01) repetition of the practice scenario, and that group 3 

had significantly less bleeding than group 1 in the second (P = .02) and fourth (P = .02) 

repetitions of the practice scenario (Figure 6A-B). In addition, a pairwise test with Šidák 

adjustment indicated that group 3 demonstrated a significantly lower instrument tip separation 
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distance by the second repetition of the practice scenario compared with group 1 (mean ratio, 

1.25 [95% CI, 1.05 to 1.50] mm; P = .008) and compared with group 2 in the third (mean ratio, 

1.20 [95% CI, 1.00 to 1.44] mm; P = .049) and fourth (mean ratio, 1.22 [95% CI, 1.02 to 1.46] 

mm; P = .03) repetitions of the practice scenario. This same statistical test found that group 2 had 

a significantly lower instrument tip separation distance than group 1 during the fifth repetition 

(mean ratio, 1.33 [95% CI, 1.11 to 1.59] mm; P < .001; Figure 6C). No other statistically 

significant differences were observed between group 1 and 2 in the other performance metrics. A 

pairwise test with Šidák adjustment also indicated that, by the third repetition, group 3 used 

significantly less force with the ultrasonic aspirator than group 1 (mean ratio, 1.68 [95% CI, 1.23 

to 2.31] N; P < .001) and group 2 (mean ratio, 1.50 [95% CI, 1.09 to 2.06] N; P = .007; Figure 

6E). No statistically significant differences were found between the groups in the force applied 

using the bipolar forceps (P > .05), as indicated by a robust linear mixed model regression 

(Figure 6D). Compared to baseline performance, by the second repetition of the practice 

scenario, group 1 significantly decreased the distance between their instruments (mean 

difference, 2.28 [95% CI, 0.57 to 3.99] mm; P = .001). This finding was also observed for group 

2 (mean difference, 3.47 [95% CI, 2.30 to 4.64] mm; P < .001) and group 3 (mean ratio, 1.55 

[95% CI, 1.36 to 1.77] mm; P < .001; Figure 6C), as indicated by a pairwise test with Bonferroni 

adjustment. This same test found that, compared to baseline performance, groups 1, 2, and 3 

significantly lowered the force applied with the bipolar forceps (mean difference, 0.08 [95% CI, 

0.02 to 0.13] N; P < .001; mean difference, 0.13 [95% CI, 0.07 to 0.18] N; P < .001; and mean 

ratio, 1.38 [95% CI, 1.13 to 1.67] N; P < .001, respectively) by the second repetition (Figure 

6D). Nemenyi test showed that group 3 also achieved a significantly lower rate of healthy tissue 

removal (P < .001) and volume of blood lost (P < .001) by the second repetition compared to 
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baseline, and a pairwise test with Bonferroni correction found that this group demonstrated a 

lower force applied with the ultrasonic aspirator (mean difference, 0.05 [95% CI, 0.02 to 0.07] 

N; P < .001) by the second repetition compared to baseline (Figure 6A-B, 6E). Other 

improvements from baseline performance and between specific trials are shown in Figure 6. 

 

Technical Skill Transfer to the Simulated Realistic Subpial Resection 

 

The estimates for each metric analyzed using parametric statistical methods can be found in 

Table 5. Following the completion of the realistic scenario, a pairwise test with Šidák adjustment 

indicated that group 3 applied significantly less force with the ultrasonic aspirator than group 1 

(mean difference, 0.04 [95% CI, 0.01 to 0.07] N; P = .01) (Figure 7E). No other statistically 

significant differences were found between the groups. 

 

DISCUSSION 

 

To the authors’ knowledge, this cohort study is the first investigation to demonstrate the 

pedagogical impact of AI-augmented personalized instruction on the frequency of feedback 

instructions and on the results of these specific surgical instructions on trainee surgical 

performance. A previous RCT used ICEMS scores to explore the effect of the three different 

instructional methods utilized in this investigation on trainee skill acquisition and skill transfer.50 

This study builds on this investigation, focusing on the frequency of instructions provided and 

their impact on changes in technical skill. 
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Consistent with our first hypothesis, participants receiving AI-augmented personalized 

instruction received fewer total instructions compared with AI tutor and scripted human 

instruction. Since feedback was only provided when the ICEMS detected an error, fewer 

feedback instructions suggests that AI-augmented instructions may be more comprehensible and 

provide more clarity to trainees to understand how to correct errors in their performance. In the 

second repetition, when trainees first began receiving feedback, the AI-augmented personalized 

instruction group received significantly fewer instructions compared to those trained by the AI 

tutor, providing evidence for this methodology’s immediate efficacy for teaching trainees how to 

correct errors. This group was the only group to receive significantly fewer total instructions 

throughout the session, suggesting that the information in the instructions provided sufficient 

context and was actionable in real time.  

 

The AI-augmented personalized instruction group had significantly lower values compared to the 

AI tutor instruction group for both risk metrics assessed and two of the three coaching metrics, 

consistent with our second hypothesis. Except for instructions pertaining to bipolar force, all the 

instructions given aim to decrease values in the technical skill performance metrics (Table 1). 

The absence of significant differences in the bipolar force applied may be attributable to 

participants receiving instructions to increase or decrease the force applied with the bipolar 

forceps throughout the session. This may have allowed participants in all groups to learn the 

ideal amount of force application with this instrument. Employing a similar methodology for 

teaching the other metrics, where trainees are made aware of appropriate changes to performance 

as much as they are made aware of errors, has proven beneficial for surgical skill acquisition and 

may be an avenue to explore in future studies involving the ICEMS.109 
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The scripted human instruction group did not consistently receive fewer instructions or exhibit 

significantly better technical skill performance compared with the AI tutor instruction group. 

These groups received instructions using identical wording, suggesting that the instructions 

programmed into the ICEMS may not provide sufficient information to allow trainees to learn to 

consistently correct errors. This is further supported by the AI-augmented personalized 

instruction group’s fewer instructions received and outperformance of both other groups in 

several metrics. Investigations into the instructions that elicited the most appropriate changes in 

performance are presently being conducted using a series of Large Language Models (LLMs) to 

further optimize both the ICEMS and human expert instructions to enhance performance 

outcomes.110  

 

The results indicate that correcting performance relating to a high amount of force applied with 

the ultrasonic aspirator may be most effectively accomplished with AI-augmented instructions. 

This group received fewer instructions for this metric and outperformed both other groups during 

the summative assessment in repetition six, and group 1 during the realistic scenario. Studies 

focused on exploring the utility of LLMs to understand the reasons for the success of AI-

augmented personalized instructions for this particular metric may further enhance the actionable 

vocabulary of the ICEMS.  

 

These findings have supported the hypothesis that providing skilled instructors with AI-

generated error data to facilitate the provision of personalized, continuous, contextualized 

feedback improves learning in a simulated surgical environment. Further research is required to 
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determine whether these findings can be generalized to more realistic surgical settings, and such 

studies using an ex vivo animal model are currently underway.75,111–113 This cohort study 

demonstrates the potential for AI-augmented personalized instruction to optimize trainee 

assessment, teaching, and error mitigation in the operating room environment, helping to lay the 

foundations for the development of future intelligent human operating rooms powered by AI 

technology. 

 

LIMITATIONS 

 

Intelligent tutoring systems cannot completely replicate the communication interchange between 

a surgical educator and a learner in complex human operating settings.114 This study was carried 

out using a small sample of medical students in their preparatory, first, or second year, and 

findings cannot be generalized to senior medical students or surgical residents. However, the 

results of a series of simulation studies has demonstrated that using medical students with 

minimal surgical experience has provided valuable insights.42,43,49,97 Investigations using 

neurosurgical residents, fellows, and neurosurgeons are in preparation involving ex vivo models, 

but the limited number of participants available may limit the ability of these studies to achieve 

sufficient power to detect statistically significant differences unless multiple teaching centers are 

involved. 

 

CONCLUSION 

 

This cross-sectional cohort study demonstrated that artificial intelligence-augmented 

personalized instruction resulted in less frequent feedback and improved surgical technical skills.  
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These results continue to outline the importance of human educator engagement and the critical 

role they play in developing intelligent tutoring systems for surgical education applicable to the 

human operating room.   
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THESIS SUMMARY 

Contributions to Original Knowledge 

This study contributes to the understanding of the best practices for surgical education, 

specifically for providing intraoperative instructions to surgical trainees, in the following way: 

1. To our knowledge, this study is the first to investigate the effect of augmenting human 

instruction using AI-derived error data on the frequency of feedback instructions and on 

trainee technical skill development in a VR simulation environment. 

Discussion 

This thesis aimed to investigate the effect of AI-augmented personalized instructions on feedback 

frequency and trainee technical skill performance. We conducted a secondary analysis of a 

single-blinded parallel-design RCT involving 88 medical students from four Quebec universities. 

These students performed subpial brain tumor resection procedures on the NeuroVR while 

receiving instructions, and the instructional methodologies differed according to their group 

allocation. The number of feedback instructions received by each trainee, as well as their 

technical skill performance metrics during the operation, were measured for analysis.  

The first coprimary objective of this thesis was to determine the effect of providing human expert 

instructors with ICEMS quantitative performance data on the number of instructions received by 

each trainee during simulation training. Of the three intervention groups, only the AI-augmented 

personalized instruction group received significantly fewer total instructions and instructions 

relating to high aspirator force between the second repetition and the three subsequent formative 

repetitions of the practice scenario. This suggests that the instructions were clear and more 

actionable throughout the session than the other two instructional methodologies (Figure 5A, 

5G). Additionally, consistent with our first hypothesis, the AI-augmented personalized 
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instruction group received fewer total instructions compared to the AI tutor instruction and 

scripted human instruction groups (Figure 5A). Instructions were only provided following metric 

error detection by the ICEMS; thus, receiving less instructions meant that less errors were made, 

suggesting a better understanding of the feedback provided. The AI-augmented personalized 

instruction group also received significantly fewer total instructions in the second repetition, 

when participants first began receiving feedback, compared to the AI tutor instruction group. 

This suggests that the instructions were immediately more comprehensible and more effective in 

reducing errors (Figure 5A).  

The second coprimary objective of this thesis was to determine the effect of AI-augmented 

personalized instruction on trainee technical skill level, using metrics recorded by the NeuroVR 

system. AI-augmented personalized instruction was the only group to exhibit consistent technical 

skill improvement from baseline. This group demonstrated improved performance in all five 

technical skill metrics in all subsequent repetitions of the practice scenario, further implying that 

AI-augmented personalized instructions led trainees to better understand how to fix their errors 

(Figure 6). Furthermore, AI-augmented personalized instruction resulted in lower technical skill 

performance metric values compared to AI tutor instruction for both risk assessment metrics 

(Figure 6A-B) and two of the three coaching metrics (Figure 6C, 6E), consistent with our second 

hypothesis. Besides instructions relating to bipolar force application, the instructions directed 

participants to achieve lower values in the technical skill performance metrics. Therefore, 

achieving lower values in these metrics suggests a better understanding of the feedback provided. 

There are two instructions associated with the bipolar force application metric – one notifying 

trainees when they apply too much force, and one when they apply too little – as deviances in 

either direction pose a significant risk to patient safety (Table 1).47,48 In comparison to the other 
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metrics, where only high values trigger the provision of an instruction, the dual instructions 

relating to bipolar force may have resulted in trainees learning the ideal amount of force to apply, 

providing a possible explanation for the lack of significant differences between the three 

intervention groups for this metric. This finding points to the potential benefit of applying 

operant conditioning theories to the ICEMS teaching methods to improve technical skill 

development, which have already proven useful for surgical skill acquisition.109 

Scripted human instruction did not consistently result in a reduced feedback frequency, nor in an 

improvement in technical skill performance compared to AI tutor instruction (Figure 5, 6). These 

groups received instructions in the same wording (Table 1), implying that the feedback provided 

by the ICEMS may need to be modified in order for trainees to exhibit the intended changes to 

their technical skill performance. This is further supported by the AI-augmented personalized 

instruction group’s outperformance of both groups in the frequency of feedback instructions and 

in technical skill performance. A study using Large Language Models (LLMs) is currently 

underway to understand the specific instructions that elicited the most appropriate responses by 

trainees.110  

A previous RCT demonstrated that feedback provided by an expert instructor based solely on the 

instructor’s observations was inferior to AI tutor instruction in improving surgical performance.42 

The results of a cross-over RCT showed that performance significantly improved when trainees 

first received expert instruction followed by AI tutor instruction.97 Additionally, the primary 

investigation of the RCT outlined in this thesis determined that AI-augmented personalized 

instruction resulted in a significantly enhanced surgical performance compared to both other 

groups.50 The finding from these three studies, as well as the results in this thesis, support the 

notion that resident technical skill development in the operating room could benefit from 
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combining human instructors with real-time quantitative data from an intelligent system. 

Implementing these systems could improve technical skill acquisition and assessment, posing a 

great advantage to surgical residency programs. 

Limitations 

A sample of medical students in their preparatory, first, or second year from four Québec 

universities was used for this study. These findings therefore cannot be generalized to the target 

population (ie, surgical residents), nor can they be applied to trainees in other institutions. 

However, the low availability of surgical residents poses difficulties in achieving statistical 

power in RCTs. Additionally, the junior medical students in this sample are still early in their 

medical careers, meaning they have less clinical experience than their senior counterparts. While 

this means that the findings cannot be applied to trainees at the residency level, this is a 

favourable characteristic for an RCT as it reduces the chance of introducing confounding factors 

that could make participants less comparable to one another (eg, prior experience in a surgical 

rotation). Finally, several previous simulation studies have employed a sample of junior medical 

students and shown meaningful results.42,43,49,97 Nevertheless, future studies should be conducted 

with trainees at the residency level to determine whether similar conclusions are made, as the 

aim of this study and similar investigations is to inform the use of simulation for technical skill 

development in surgical residency programs.  

While the NeuroVR platform has been previously validated,47,98 the replication of neurosurgical 

procedures and the handling of biological tissues can only be simulated by these VR systems; it 

is never exactly the same as real-life procedures.71 As such, further investigations are required to 

determine whether these findings can be applied to more realistic operating room environments. 

One such study is currently underway, utilizing a more realistic ex vivo animal model. 
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Future Directions 

As previously discussed, this investigation demonstrated that AI-augmented personalized 

instruction resulted in lower technical skill performance metric values, suggesting a better 

understanding of the instructions provided. However, it has not been determined whether these 

technical skills are consistent with an expert-level performance. Future studies may wish to 

compare the technical abilities of trainees taught by AI-augmented personalized instruction to 

those of expert surgeons using the NeuroVR platform.  

The AI-augmented personalized instruction group achieved a lower feedback frequency and 

lower performance metric values for ultrasonic aspirator force application compared to both 

other groups in summative assessment repetition six and compared to the AI tutor instruction 

group in the realistic scenario (Figure 5G, 6E, 7E). These findings suggest that AI-augmented 

personalized instructions provided details that were essential to correcting errors in this metric 

but were missing from the other groups’ instructions. As a potential starting point for optimizing 

the teaching capabilities of the ICEMS, future studies can employ LLMs to identify the most 

effective instructions relating to this metric and later expand this investigation to include the 

other metrics. These findings could be used to inform the teaching of surgical skills in a 

simulated environment using the ICEMS, in the human operating room with an expert instructor, 

or for the development of future intelligent human operating rooms.  

Conclusion 

In this cross-sectional cohort study, AI-augmented personalized instruction resulted in a reduced 

feedback frequency and an improvement in technical skill performance compared to AI tutor 

instruction. These results show the value of employing quantitative data for surgical training and 

assessment in surgical residency programs. The potential benefits of augmenting human 



 59 

instruction with AI-derived error data to rectify deficits in performance are outlined, and further 

investigations are required to determine their transferability to the human operating room 

environment.   
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FIGURES 

 
Figure 1. Practice subpial tumor resection scenario. (A) Start of the practice subpial tumor 

resection scenario. Yellow area represents the tumor and white area represents healthy brain 

tissue. Instrument on the left is the bipolar forceps, and instrument on the right is the ultrasonic 

aspirator. (B) Participant lifts the pia using the bipolar forceps to expose the underlying tumor, 

and the ultrasonic aspirator to resect the tumor. (C) Appearance following resection of the 

superficial tumor. Deeper tumor areas shown by remaining yellow tissue. (D) Participant exposes 

deep cerebral vessel (red). (E) Participant uses the bipolar forceps to cauterize a bleeding point. 

(F) Complete resection of the tumor.  
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Figure 2. Realistic subpial tumor resection scenario. (A) Start of the realistic subpial tumor 

resection scenario. Off-white area represents the tumor and pink area represents healthy brain 

tissue. Instrument on the left is the bipolar forceps, and instrument on the right is the ultrasonic 

aspirator. (B) Participant lifts the pia using the bipolar forceps to expose the underlying tumor, 

and the ultrasonic aspirator to resect the tumor. (C) Participant causes minor bleeding from the 

tumor while using the ultrasonic aspirator. (D) Participant uses the bipolar forceps to cauterize a 

bleeding point. (E) Participant causes major bleeding from the healthy tissue while using the 

ultrasonic aspirator. (F) Complete resection of the tumor. 
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Figure 3. Flow diagram. Eighty-eight students were randomly allocated into 3 intervention 

groups. Abbreviation: AI, artificial intelligence. 
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Figure 4. Number of instructions that each group received for each ICEMS metric across the 

second to fifth repetitions of the practice scenario. Metrics are color coded (see legend). X-axis 

represents the repetition number. Colored stacked bars represent the number of instructions for 

each ICEMS metric. Instructions were given upon metric error detection by the ICEMS. Total 

number of instructions are indicated in bold above each bar. Abbreviations: AI, artificial 

intelligence; ICEMS, Intelligent Continuous Expertise Monitoring System. 
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Figure 5. The mean total number of instructions and mean number of instructions in each 

ICEMS performance metric across the second to fifth repetitions of the practice scenario. Groups 

are color coded (see legend). The X-axis represents the repetition number. Points represent group 

means and error bars represent standard errors. Black horizontal brackets indicate statistically 

significant differences between groups (P < .05) during a given repetition. Asterisks indicate 

statistically significant differences from the baseline (P < .05) for that group. Abbreviations: AI, 

artificial intelligence; ICEMS, Intelligent Continuous Expertise Monitoring System. 
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Figure 6. The learning curves of five technical skill performance metrics across six repetitions of 

the practice scenario. Groups are color coded (see legend). The X-axis represents the repetition 

number. Points represent group means and error bars represent standard errors. Since the 

simulator records the metrics at a frequency of 50 Hz, the unit of time (t) is equal to 20 ms. Black 

horizontal brackets indicate statistically significant differences between groups (P < .05) during a 

given repetition. Within-group differences are represented by horizontal brackets in the 

respective color for that group (P < .05). Abbreviations: AI, artificial intelligence. 
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Figure 7. Five technical skill performance metrics during the realistic scenario. Groups are color 

coded (see legend). The X-axis represents the group. Colored bars represent group means and 

error bars represent standard errors. Since the simulator records the metrics at a frequency of 50 

Hz, the unit of time (t) is equal to 20 ms. Black horizontal brackets indicate statistically 

significant differences between groups (P < .05). Abbreviations: AI, artificial intelligence. 
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TABLES 

Metric ICEMS Instruction 

1. Healthy Tissue Injury Risk “Try to avoid damaging the healthy brain 

surrounding the tumor.” 

2. Bleeding Risk “Careful control of bleeding will improve 

your performance.” 

3. Instrument Tip Separation Distance “Keeping your instruments closer together 

will improve your performance.” 

4. High Bipolar Force Application “Try to decrease the amount of force you are 

applying with your bipolar.” 

5. Low Bipolar Force Application “You can improve your performance by 

applying more force with your bipolar.” 

6. High Aspirator Force Application “Try to decrease the amount of force you are 

applying with your aspirator.” 

Table 1. Metrics assessed by the ICEMS in hierarchical order, and their corresponding 

instructions.47,a  

Abbreviation: ICEMS, Intelligent Continuous Expertise Monitoring System. 
a The right column shows the instructions given to group 1 and 2 upon metric error detection by the ICEMS. If the 

ICEMS identifies more than one error simultaneously, it is programmed to provide instruction on the metric higher 

in the hierarchy.  
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 Group 1 

AI tutor 

instruction  

(n = 30) 

Group 2 

Scripted human 

instruction 

(n = 29) 

Group 3 

AI-augmented 

personalized 

instruction  

(n = 28) 

All participants 

(n = 87) 

Age, mean ± SD (range) 21.8±2.4 (18–27) 22.6±4.4 (18–38) 23.9±4.8 (19–37) 22.7±2.4 (18–38) 

Sex     

  Female 18 16 12 46 

  Male 12 13 15 40 

  Prefer not to say 0 0 1 1 

Gender      

  Woman 18 16 12 46 

  Man 12 13 15 40 

  Prefer not to say 0 0 1 1 

Undergraduate medical 

training level 

    

  Preparatory 9 8 8 25 

  First 15 14 13 42 

  Second 6 7 7 20 

Institution     

  McGill University 11 15 14 40 

  Université de Montréal 12 7 6 25 

  Université de Sherbrooke 4 6 7 17 

  Université Laval 3 1 1 5 

Handedness     

  Right 28 25 24 77 

  Left 2 3 4 9 

  Ambidextrous 0 1 0 1 

Interest in pursuing surgery,  

mean (range)a 

4 (2–5) 4.1 (2–5) 3.9 (2–5) 4 (2–5) 

Completed surgical 

rotation/clerkship/shadowing 

    

  Yes 12 10 11 33 

  No 18 19 17 54 

Plays video games     

  Yes 8 9 13 30 

  No 22 20 15 57 

Played musical instruments in 

last 5 years 

    

  Yes 9 9 13 30 

  No 21 20 15 56 

Participated in activities that 

require hand dexterity 

    

  Yes 8 12 11 31 

  No 22 17 17 56 

Previously used VR surgical 

simulation 

    

  Yes 1 2 5 8 

  No 29 27 23 79 

Table 2. Demographic characteristics of included study participants.  

Abbreviations: AI, artificial intelligence; VR, virtual reality 
a Rated on a 5-point Likert scale, with 1 indicating less interest and 5 indicating more interest.  
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Group 

Incidence Rate (IR) [SE] 

Healthy 

Tissue 

Injury Risk 

Bleeding 

Risk 

Instrument 

Tip 

Separation 

Distance 

High 

Bipolar 

Force 

Low 

Bipolar 

Force 

High 

Aspirator 

Force 

All Metrics 

Combined 

Repetition 2 

1 0.15 [0.07] 0.88 [0.28] 1.03 [0.22] 3.24 [0.50] 0.59 [0.15] 3.84 [0.47] 12.81 [1.18] 

2 0.07 [0.04] 0.78 [0.26] 0.79 [0.19] 2.26 [0.38] 1.00 [0.22] 3.94 [0.49] 10.24 [0.96] 

3 0.11 [0.07] 0.16 [0.07] 0.83 [0.20] 1.68 [0.31] 0.65 [0.16] 3.92 [0.50] 8.45 [0.84] 

Repetition 3 

1 0.16 [0.08] 0.85 [0.27] 1.00 [0.22] 2.24 [0.37] 0.80 [0.18] 3.84 [0.47] 11.63 [1.09] 

2 0.07 [0.04] 0.84 [0.28] 0.68 [0.17] 2.20 [0.37] 0.81 [0.19] 3.81 [0.48] 9.83 [0.93] 

3 0.008 

[0.009] 

0.20 [0.08] 0.48 [0.14] 1.45 [0.28] 0.44 [0.13] 2.29 [0.34] 5.65 [0.61] 

Repetition 4 

1 0.093 [0.05] 0.75 [0.24] 1.00 [0.22] 2.64 [0.42] 1.12 [0.23] 3.32 [0.42] 11.56 [1.08] 

2 0.091 [0.05] 0.67 [0.23] 0.71 [0.18] 1.87 [0.33] 1.14 [0.24] 3.55 [0.45] 9.38 [0.90] 

3 1.24E-11 

[3.17E-7] 

0.15 [0.07] 0.38 [0.12] 1.24 [0.25] 0.77 [0.18] 1.67 [0.28] 4.84 [0.55] 

Repetition 5 

1 0.14 [0.07] 0.99 [0.32] 0.95 [0.21] 2.64 [0.42] 0.85 [0.19] 4.14 [0.50] 12.58 [1.16] 

2 0.050 [0.03] 0.83 [0.27] 0.58 [0.15] 1.76 [0.31] 0.67 [0.16] 3.17 [0.42] 8.30 [0.81] 

3 0.033 [0.02] 0.12 [0.06] 0.35 [0.11] 1.30 [0.26] 0.44 [0.13] 1.67 [0.28] 4.55 [0.52] 

Table 3. Incidence rates and standard errors of instructions for six ICEMS metrics received 

during the second to fifth repetitions of the practice resection scenario.a 

Abbreviation: ICEMS, Intelligent Continuous Expertise Monitoring System. 
a Estimates are from the between-group statistical analyses of these ICEMS metrics.  
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Group 

Estimated Geometric Mean (EGM) [SE] 

Instrument Tip 

Separation 

Distance (mm) 

Force Applied 

with Bipolar 

Forceps (N) 

Force Applied 

with Ultrasonic 

Aspirator (N) 

Repetition 1 

1 11.79 [0.61] 0.43 [0.02]b 0.16 [0.01] 

2 11.84 [0.63] 0.43 [0.02]b 0.15 [0.01] 

3 11.76 [0.63] 0.44 [0.02]b 0.16 [0.01] 

Repetition 2 

1 9.52 [0.50] 0.36 [0.02]b 0.13 [0.01] 

2 8.33 [0.44] 0.30 [0.02]b 0.11 [0.01] 

3 7.59 [0.41] 0.32 [0.02]b 0.11 [0.01] 

Repetition 3 

1 8.84 [0.46] 0.33 [0.02]b 0.13 [0.01] 

2 8.20 [0.43] 0.31 [0.02]b 0.12 [0.01] 

3 6.84 [0.37] 0.27 [0.02]b 0.08 [0.01] 

Repetition 4 

1 8.78 [0.46] 0.33 [0.02]b 0.13 [0.01] 

2 7.69 [0.41] 0.29 [0.02]b 0.11 [0.01] 

3 6.32 [0.34] 0.26 [0.02]b 0.07 [0.01] 

Repetition 5 

1 9.87 [0.51] 0.36 [0.02]b 0.14 [0.01] 

2 7.42 [0.39] 0.28 [0.02]b 0.11[0.01] 

3 6.62 [0.36] 0.27 [0.02]b 0.07 [0.01] 

Repetition 6 

1 9.82 [0.51] 0.37 [0.02]b 0.14 [0.01] 

2 8.32 [0.44] 0.30 [0.02]b 0.12 [0.01] 

3 7.10 [0.38] 0.28 [0.02]b 0.08 [0.01] 

Table 4. Estimated geometric means and standard errors of technical skill performance metrics 

over six repetitions of the practice resection scenario.a 

a Only metrics analyzed using parametric statistical methods are included. Estimates are from the between-group 

statistical analyses of these technical skill performance metrics.  
b Estimated marginal mean (EMM) [SE].  
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Group 

Estimated Marginal Mean (EMM) [SE] 

Instrument Tip 

Separation 

Distance (mm) 

Force Applied 

with Bipolar 

Forceps (N) 

Force Applied 

with 

Ultrasonic 

Aspirator (N) 

1 15.51 [1.28] 0.40 [0.02] 0.12 [0.01] 

2 13.92 [1.30] 0.34 [0.02] 0.11 [0.01] 

3 12.16 [1.32] 0.34 [0.02] 0.08 [0.01] 

Table 5. Estimated marginal means and standard errors of technical skill performance metrics 

during the realistic resection scenario.a 

a Only metrics analyzed using parametric statistical methods are included. Estimates are from the between-group 

statistical analyses of these technical skill performance metrics.  
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