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ABSTRACT

Background

Current practices for teaching surgical technical skills rely on the subjective observations of
human instructors, underscoring a need for objective instructional methodologies and
performance assessments that are standardized across teaching institutions. Thus, our team
developed the Intelligent Continuous Expertise Monitoring System (ICEMS), an artificial
intelligence (Al) system that uses quantitative data to continuously assesses trainee performance
and provide real-time verbal feedback. Using the NeuroVR simulation platform, a randomized
controlled trial from our center found that Al-augmented personalized instruction resulted in
enhanced ICEMS scores on a simulated subpial resection scenario compared to Al tutor

instruction and scripted human instruction.

Objectives
The objective of this study is to determine whether Al-augmented personalized instruction will
result in a reduced feedback frequency and be more effective in improving surgical technical

skill acquisition in a simulated surgical scenario compared to intelligent tutor instruction alone.

Methods

The number of feedback instructions that resulted from each instructional method was extracted
from the ICEMS and analyzed. Feedback focused on 6 predetermined, Al-derived metrics:
healthy tissue injury risk, bleeding risk, high instrument tip separation distance, high force
applied with the bipolar forceps, low force applied with the bipolar forceps, and high force
applied with the ultrasonic aspirator. In addition, participant performance was assessed through
technical skill performance metrics, recorded by the NeuroVR simulation platform, including the

rate of healthy tissue removal (mm?/t), total volume of blood lost (mm?), instrument tip
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separation distance (mm), force applied with bipolar forceps (N), and force applied with
ultrasonic aspirator (N). The mean of each performance metric was calculated for each repetition

of the simulated scenario.

Results

The analysis included 522 practice scenarios and 87 realistic scenarios. By the third repetition of
the practice scenario, the Al-augmented personalized instruction group received significantly
fewer total instructions (incidence rate ratio (IRR), 1.50 [95% CI, 1.16 to 1.94] instructions; P <
.001), and instructions relating to high aspirator force application (IRR, 1.71 [95% CI, 1.15 to
2.55] instructions; P =.002) compared to the second repetition. Compared to Al tutor instruction,
Al-augmented personalized instruction resulted in improved technical skill performance,
including a significantly lower rate of healthy tissue removal (P = .01), instrument tip separation
distance (mean ratio, 1.25 [95% CI, 1.05 to 1.50] mm; P = .008), and aspirator force (mean ratio,
1.68 [95% CI, 1.23 to 2.31] N; P <.001) by the third repetition of the practice scenario. The Al-
augmented personalized instruction group showed a significant improvement from baseline in all

subsequent repetitions for all five performance metrics.

Conclusion
Artificial intelligence-augmented personalized instruction resulted in less frequent feedback and
an improvement in simulated surgical skills, providing further evidence for the critical role that

human educators play in an intelligent operating room environment.
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RESUME
Contexte
Les méthodes courantes d’enseignement des compétences techniques chirurgicales sont fondées
sur les observations subjectives des instructeurs humains. Cela souligne I’importance des
méthodologies pédagogiques objectives et des évaluations de la performance standardisées dans
I’ensemble des établissements d'enseignement. Ainsi, notre équipe a développé [ ’Intelligent
Continuous Expertise Monitoring System (ICEMS), un systéme d’intelligence artificielle (IA)
qui utilise des données quantitatives pour évaluer les performances des stagiaires en continu et
pour fournir des instructions verbales en temps réel. Avec I’aide de la plateforme de simulation
NeuroVR, un essai controlé randomisé¢ mené par notre centre a démontré que des instructions
personnalisées augmentées par I'lA entrainaient de meilleurs résultats d’ICEMS dans un scénario
simulé de résection sous-piale, comparativement aux instructions fournies par un tuteur IA et aux

instructions humaines scriptées.

Objectifs

L’objectif de cette étude est de déterminer si des instructions personnalisées augmentées par 1'TA
entraineront une réduction dans la fréquence de rétroactions et amélioreront, avec plus
d’efficacité, ’acquisition des compétences techniques chirurgicales dans un scénario chirurgical

simulé, comparativement aux instructions fournies uniquement par un tuteur IA.

Méthodes

Le nombre de rétroactions générées par chaque méthode d'enseignement a été extrait de
I’ICEMS et analysé. Les instructions étaient concentrées sur six indicateurs prédéterminés,
dérivés de I’TA : le risque de 1€sion des tissus sains, le risque de saignement, la distance de

séparation €élevée des pointes des instruments, une force trop €levée appliquée avec la pince
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bipolaire, une faible trop force appliquée avec la pince bipolaire et une force trop ¢élevée
appliquée avec l'aspirateur a ultrasons. De plus, les performances des participants ont été
évaluées a 1’aide d’indicateurs de compétences techniques, enregistrées par la plateforme de
simulation NeuroVR, notamment : le taux d'élimination des tissus sains (mm?/t), le volume total
de sang perdu (mm?), la distance de séparation des pointes des instruments (mm), la force
appliquée avec une pince bipolaire (N) et la force appliquée avec un aspirateur a ultrasons (N).
La moyenne de chaque mesure de performance a été calculée pour chaque répétition du scénario

simulé.

Résultats

L’analyse comprenait 522 scénarios d’entrainement et 87 scénarios réalistes. Dés la troisieme
répétition du scénario d’entrainement, le groupe recevant des instructions personnalisées
augmentées par I'A avait recu une diminution significative du nombre de rétroactions (rapport
de taux d'incidence (TRI) 1,50 [IC de 95 % 1,16 a 1,94] instructions ; p < 0,001), ainsi que moins
de rétroactions concernant 1’application d'une force d'aspiration excessive (TRI 1,71 [IC de 95 %
1,15 a 2,55] instructions ; p = 0,002) comparativement a la deuxiéme répétition. Par rapport aux
instructions fournies par le tuteur IA, nous avons observé une amélioration des performances
techniques, notamment : une réduction significative du taux d'élimination des tissus sains (p =
0,01), de la distance de séparation des pointes des instruments (rapport moyen 1,25 [IC de 95 %
1,054 1,50] mm ; p = 0,008) et de la force d'aspiration (rapport moyen 1,68 [IC de 95 % 1,23 a
2,311 N ; p<0,001) lors de la troisiéme répétition du scénario d’entrainement. Le groupe ayant
regu des instructions personnalisées augmentées par 1'TA a montré une amélioration significative
par rapport a la ligne de base pour les cinq indicateurs de performances, au cours des répétitions

suivantes.
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Conclusion

L’instruction personnalisée augmentée par l'intelligence artificielle a entrainé une diminution
significative du nombre de rétroactions fournies aux stagiaires ainsi qu’une amélioration des
compétences chirurgicales en simulations, apportant des preuves supplémentaires qui illustrent le

role essentiel des éducateurs humains dans un environnement opératoire intelligente.
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INTRODUCTION

Being one of the most perilous, dynamic medical fields, the surgical domain is associated with
medical errors.’>"!° Patient outcomes depend on a surgeon’s technical and non-technical skills,® !
particularly in the field of neurosurgery, where errors can result in significant patient morbidity
and mortality.>!%!3-22-26 Dye to the correlation between surgical errors and complication rates, a
greater emphasis has been placed on assessing performance throughout surgical residency
programs by defining measurable competencies.?’-*® These program curricula are shifting from
the traditional, Halstedian, time-based approach towards the adoption of a competency-based
medical education (CBME) curriculum.?*° However, assessing these competencies has proven
difficult due to a lack of standardized, structured assessments.!!?’3! Global rating scales, such as
the Objective Structured Assessment of Surgical Technical Skill (OSATS),*? have been adopted;
however, they have been criticized for their reliance on qualitative data, introducing subjectivity
and bias due to the variability between individual educators.*

Innovations such as virtual reality (VR) simulators have shown great potential in addressing
these limitations.>**° By replicating the visual, auditory, and haptic feedback of particularly
challenging procedures, VR provides an immersive, controlled environment that can effectively
prepare trainees before they enter the operating room.!'*%:36-3841 Virtyal reality simulators
capture large amounts of quantitative performance data in real-time, much of which cannot be
assessed by human instructors, such as the economy of movement or volume of blood lost.>* And
yet, these systems still tend to rely on human instructors to assess trainee performance and
provide feedback, maintaining the aforementioned issue of subjectivity.***! Feeding this data
into artificial intelligence (Al) technologies opens the door to the objective, structured

assessment of skills and logging of performance overtime.'3*~4¢ Al systems can identify deficits

in trainee performance and provide actionable feedback accordingly, thereby supplementing
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current surgical teaching practices.*!***78 Our team has designed one such intelligent tutoring
application, which can be integrated into a VR surgical platform to train bimanual psychomotor
skills.*’

The Intelligent Continuous Expertise Monitoring System (ICEMS) uses a long short-term
memory (LSTM) network to continuously assess trainee performance in 0.2-second intervals and
provide continuous, real-time verbal feedback to improve trainee performance and mitigate
errors.*’ It has been validated for its ability to assess performance,*’ and outperformed human
expert instructors in teaching technical skills on a neurosurgical simulation platform, validating
it’s use as an intelligent tutoring system.*? However, studies have suggested that combining
intelligent tutors with human instructors may be beneficial, as human instructors can
contextualize the errors identified by the algorithm.*'** A recent randomized controlled trial
(RCT) sought to investigate this combination; however, the study focused on the ICEMS’s
performance assessment, rather than other aspects of trainee performance.*® This thesis aims to
investigate the impact of Al-augmented personalized instruction on the frequency of feedback
instructions provided and on trainee technical skill performance. These findings can be used to
inform the adoption of Al performance assessment and intelligent tutoring functionalities into

existing surgical residency program curricula.

BACKGROUND

Instructional Methods in Surgical Education

Situational awareness, technical skills, and interpersonal skills are only some of the factors that
make up a well-rounded, expert surgeon.® 2! The ability to draw on large bodies of knowledge,
confront uncertainty, and problem solve are key to positive patient outcomes and delivering safe,

high-quality care.®!1'217-2! There is a strong association between the application of these skills
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and surgical outcomes®1%121320.21: syrgery sees a high rate of preventable complications, and

many of these are due to surgical errors.>!° A lack of technical skills has been linked with poor

8-10.12.13 accounting for approximately 25% of surgical complication rates. !

surgical outcomes,
Furthermore, the United States sees up to 98 000 annual deaths due to preventable medical
errors.’! In addition to these findings, up to 42% of residents don’t feel adequately prepared to
perform procedures on their own?”>2>; the 80-hour work week restriction limiting the diversity
of cases they’re exposed to.>?” Therefore, it is imperative that residents demonstrate competence
in order to be prepared for independent clinical practice.? This is particularly important in
neurosurgery, as these highly invasive procedures are especially vulnerable to medical errors.?
For instance, a prospective study investigating errors in neurosurgical procedures found that 75%
were preventable.?? The surgical field has seen some significant innovations, ranging from the
discovery of anesthesia to surgical robotics. However, the methods for teaching surgical residents
have remained mostly unchanged.'®?’

Surgical residency was founded in 1890 at Johns Hopkins Hospital by Dr. William Halsted based
on the “see one, do one, teach one” approach.>* In this model, trainees observe an attending
surgeon’s performance, then are expected to perform the operation based on what they learned,
and afterwards teach their peers these skills.?”?° The approach is based on apprenticeship, where
trainees work closely with an expert surgeon gaining incremental responsibility, and it is
assumed that an accumulation of knowledge (ie, a longer time spent practicing) inherently means
better surgical skills, though this is not always necessarily the case.***”>> This method of training
surgical residents has been criticized, as it involves on-the-job training of residents while in the

operating room, posing a potential risk to patient safety and ethical concerns.®3%31:3449:5¢ Thjg g
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especially so given the abundance of alternative methods for skill development that are currently
available.>°

The modern paradigm follows a CBME model, which necessitates that residents reach a certain
level of competency before progressing in their surgical residency program.>-** Defined learning
objectives guide residents in their skill development.?®° In Canada, CBME is implemented

through the Competence by Design (CBD) model.’’

Effective, personalized coaching,
specifically in-the-moment coaching. has been identified as a critical component to the success
of CBD.>”" It is supported by a detailed framework that facilitates conversations between
learners and instructors, known as the R2C2 model.> Despite this push for improved feedback
and guidance, surgical teaching methodologies remain very similar to the apprenticeship model,
wherein residents continue to receive the majority of their training in the operating room, with
the added aspects of in-the-moment coaching and formally assessing trainee performance before
entrusting them with further responsibilities.?” In this approach, residents may be limited in the

diversity of cases they see,?”%!

and training relies on the presence of an instructor, limiting how
often trainees can practice and demanding a lot of time from attending surgeons whose
secondary focus is the resident’s learning — the primary being providing quality care to their
patients.?”%° The risk posed to patient safety also remains.>*!3 Therefore, there is a clear need
to expand surgical teaching methods beyond the confines of the operating room.

Studies have shown that a variety of instructional methods should be used when teaching
surgical trainees, such as learning by performing tasks, self-reflection, modelling behaviours of

experienced surgeons, self-directed study, and more.®* However, in practice, the limitations

imposed by learning in the operating room make these approaches incompatible to the current



21

teaching paradigm, as implementing these methods introduces concerns of time constraints and

patient safety.5>-64

13,29,35,55,65,66 wherein

Previous research has also supported the concept of deliberate practice,
trainees practice technical skills through tasks with well-defined goals while receiving real-time
feedback to improve their performance.> For the practice to be deliberate, there must be the
opportunity to continually train, repeating the task many times to refine performance, and
overtime be faced with new challenges to overcome.’® This method of skills acquisition involves
complex cognitive processes that help trainees avoid becoming automated in how they perform a
task, and they instead veer towards mastery.>> The use of these principles is not evident in
teaching practices in the human operating room due to difficulties in applying these systems in
these complex surgical environments. Repeating steps is difficult since prolonging a procedure
for teaching purposes creates unnecessary risks to patient safety.®>* Furthermore, deliberate
practice requires trainees to challenge themselves,> but applying this facet in the human
operating room would involve a resident attempting to deal with an operative issue that may be
above their current ability, introducing another potential for patient harm.!® To bypass these
limitations and allow surgical residents to benefit from the application of deliberate practice,
surgical simulators can be employed. Simulators provide a risk-free environment where trainees
can be assessed on specific criteria, receive real-time feedback, refine challenging techniques,

13,28,36,55,56.61 I addition, simulators lend themselves well to the

and repeat a task indefinitely.
current surgical education curriculum, as they provide a platform for CBD in-the-moment

coaching without necessitating the presence of a human instructor.
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Simulation in Surgical Education

Simulation involves the reproduction of real-life experiences, immersing the user in the
simulation environment.'*%¢7 It has proven to be useful for training in many domains, such as
aviation training,®® though its applications in the surgical field are only beginning to be
developed.®’ Simulation can allow trainees to acquire skills in a risk-free, controlled
environment, rather than in the operating room.!>3*3641:55 A large benefit of simulators is their
ability to be assessed for face and content validity (ie, realism of the simulation setting and how
applicable the system is as a teaching tool, respectively).** Validated simulators can be used for
training essential surgical skills, decreasing the emphasis placed on training done in the operating
room if adequate alternative models are available.

Simulation includes live animal models, human cadaver models, synthetic models, and VR
systems.>*’® Applications of all these models have been created for teaching surgical residents,
but most of their training is still done on patients in the operating room.®® Live animal models
include in vivo and ex vivo models.”® These are considered high-fidelity simulations, as the
biological tissue is similar to that of a human, so trainees can practice all aspects of an
operation.”’ However, they come with disadvantages, most notably their high costs, limitations in
repetition, and ethical concerns.” Human cadavers are considered the gold standard for surgical
simulation due to their high-fidelity.” However, these models may not always be conducive for
practicing certain procedures (eg, decreased tissue quality in embalmed cadavers), are expensive
to obtain and maintain, have limited availability, and are not re-usable.”® Furthermore, synthetic
simulators, such as benchtop and laparoscopic box simulators and manikins are typically low-
fidelity, with new developments creating more high-fidelity options.”® The utility of these models

in developing surgical skills has been proven numerous times, and they are currently used in
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many surgical training curricula, though these, too, have their limitations.’® High-fidelity
synthetic models are expensive and not readily available, while low-fidelity options
predominately focus on individual techniques, rather than the interaction of many skills.**"°
Surgical competence requires that residents are able to apply multiple skills simultaneously; an
expert does not usually focus on a solitary skill while operating.®!>!7-1%-30 Additionally, both
high- and low-fidelity synthetic models are just that — synthetic — meaning their realism is
inherently limited.”® Finally, VR simulators create realistic, immersive environments in which
trainees can practice a variety of procedures on a single system.”® They allow for the repetition of
a procedure and are often considered high-fidelity, as the trainee manipulates realistic, computer-
generated images while receiving haptic feedback.%”-"° These systems entirely remove the risk to

patients,13’14’29’34’36’41

allowing trainees to focus on their technical skill development, address their
weaknesses, and challenge themselves by attempting more complex procedures. 336394135 They
have proven to be useful in improving surgical skills in a variety of surgical fields.>**** Virtual
reality simulators also collect performance data, allowing for objective and quantitative
assessment and eliminating the need for supervision; trainees can receive feedback from the
simulator itself.*404246.71 The main disadvantage of VR simulation is its high cost; however,
these systems are becoming more and more cost-effective as new research developments are

made.*%-7°

Simulation in Neurosurgical Education

Of all the surgical fields, neurosurgery is known for being particularly high stakes, as even small
errors can result in significant patient morbidity and mortality.®!%!322-25 This characteristic
makes this specialty a good candidate for the development of simulation-based training of

technical skills. Trainees can practice outside of the high-stakes operating room environment,
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creating an optimal setting for deliberate practice while mitigating patient harm. As such, our
team has developed and validated VR and ex vivo neurosurgical simulators.’”> ">

The NeuroVR (CAE Healthcare, Montreal, Canada), developed by a team of researchers at the
National Research Council Canada, is a high-fidelity, VR simulator that recreates the audiovisual
and haptic experience of neurosurgical procedures.””’® Offering interactive neurosurgical and
spinal procedures, the NeuroVR includes realistic anatomical structures, haptics, and physical
and physiological responses that allow for a more immersive training experience.’” The system
consists of a microscope, which allows for 3D visualization, as well as two instruments — bipolar
forceps and an ultrasonic aspirator — attached to haptic handles and activated by foot pedals.”
The ultrasonic aspirator is used by a trainee to suction blood and resect the abnormal tissue,
while the bipolar forceps allow for better visualization of the surgical field and can be used to
cauterize bleeding points.”> By consulting with expert neurosurgeons, the NeuroVR’s face and
content validity has been established. In addition, it’s construct validity has been determined
through the use of machine learning to evaluate simulator data.*>>7

A subpial resection procedure involves the use of bipolar forceps to retract the pia mater in order
to then resect abnormal tissue using an ultrasonic aspirator.”” The NeuroVR houses two scenarios
for this procedure: a simpler practice scenario used to acquire the necessary technical skills for
this technique (Figure 1), and a realistic scenario to assess the transfer of these skills to a more
complex procedure (Figure 2). In these scenarios, trainees must remove the glioma-like abnormal
tissue while minimizing bleeding and damage to the surrounding healthy tissue.

Virtual reality simulators such as the NeuroVR are limited by the fact that they cannot fully

replicate the sensation of handling biological tissue.”! As such, an ex vivo model was developed

by our group to provide a more realistic setting for trainee learning, while still maintaining a
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t.73 This model utilizes a calf brain — an affordable and available model that

risk-free environmen
is anatomically similar to a human pediatric brain.”> This model has previously demonstrated

face and content validity.”

Performance Assessment in Surgery

The modern paradigm for surgical residency training follows the CBME model, wherein
residents are required to meet defined learning objectives to progress in their training and prepare
for independent clinical practice.?** In Canada, CBME is implemented through the CBD model,
and these competencies are assessed using entrustable professional activities (EPAs).””’® EPAs
are key tasks that a resident can be trusted to perform independently once competence has been
demonstrated.” A surgical resident’s progress in the residency program is measured by the
successful completion of these EPAs. EPAs help standardize the assessment of core
competencies in the CBME model; however, they lack objective, structured, and specific criteria
for evaluating these domains, making them prone to subjectivity and bias. In addition, EPAs
generally focus on the successful completion of steps in a procedure, rather than assessing a
trainee’s grasp of specific, essential technical skills.”%

The Objective Structured Assessment of Technical Skills (OSATS) is just one of many global
rating scales developed to evaluate technical skill performance, often regarded as the gold
standard.*? Using this scale, evaluators rate seven domains of performance using a Likert scale:
respect for tissue, time and motion, instrument handling, knowledge of instruments, use of
assistants, flow of operation and forward planning, and knowledge of specific procedure.>? While
the OSATS solves the issue of specificity seen with EPAs when evaluating technical skill

performance,® indicating set qualities to observe in a trainee’s performance, this reliance on

qualitative data introduces subjectivity and bias.?’#6? Although employing multiple evaluation
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methods from multiple evaluators can be beneficial to a trainee’s development,®! assessments
relying on qualitative data pose difficulties in generalizing grading across multiple instructors, let
alone multiple institutions, and may make it difficult for trainees to determine whether their
performance is improving overtime. Thus, a need for an objective, structured, and specific

assessment of trainee technical skills is identified.

Performance Assessment Algorithms

Al systems are made to simulate human intelligence and reasoning.®? In the case of machine
learning, a branch of Al, these applications have progressed as far as computers learning and
acquiring human intelligence by identifying patterns in datasets and predicting outcomes based
on input data.®? Deep learning is a subset of machine learning, in which multiple neural networks
simulate human decision making.®? There are three main methods by which machine learning
algorithms can learn: unsupervised learning, supervised learning, and reinforcement learning.
Supervised learning involves feeding labelled data into a machine learning algorithm, allowing it
to recognize patterns within the dataset to make accurate, informed predictions when provided
with new data.®® Al has shown great promise in many aspects of the surgical field, including but

86,87

not limited to, predicting patient outcomes,**** detecting pathologies, and surgical skill

assessment***47 and training.*>43-46-47

Al has proven to be a valuable tool for finding hidden patterns within datasets, helping
researchers understand ambiguous findings. This feature is particularly intriguing for surgical
training, where there is a dearth of objective, quantitative assessments of surgical technical
skill.!'?73! Measuring an expert surgeon’s psychomotor skills and understanding the components

that make up expert-level performance has proven difficult, making assessing these skills and

teaching them to a novice difficult as well.® Given that AI can process and analyze large,
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complex datasets, these algorithms may be helpful in quantifying skills, thereby paving the way
to the development of objective assessments.

Difficulties with understanding the decision-making processes of unsupervised machine learning
algorithms are known as the “Black Box” problem, and they lead to hesitations in integrating Al
into the surgical field.%’ Surgery is a very high stakes setting, thus, not understanding the
reasoning used by innovative technologies could have detrimental effects to outcomes. This is
unhelpful when trying to provide feedback to improve trainee performance, as well. However,
there are methods to circumvent this. Extracting key features of expert performance and feeding
them into a supervised learning algorithm can allow developers some control over the model’s
decision making.*®* These features can be used as benchmarks of expert performance, providing
specific metrics as a standard of reference against which trainees can be assessed. Using this
method, our group developed the ICEMS, a deep learning application for assessing surgical
performance.

The ICEMS was developed by collecting data from 12 medical students (novices) and 14
neurosurgeons (experts) performing a subpial brain tumor resection procedure on the
NeuroVR.*” Subsequently, sixteen performance metrics associated with instrument handling (eg,
velocity, acceleration) and risk assessment (eg, healthy tissue injury risk) that distinguished
expert performance from novices were extracted.*’ This metric data was then labelled and used
to train an LSTM model to differentiate expertise level among participants.*’” As such, the
ICEMS quantitatively assesses performance at 0.2-second intervals, providing an expertise score
ranging from -1.00 (novice) to 1.00 (expert) based on these sixteen metrics.*” The ICEMS has
demonstrated predictive validity by accurately distinguishing between the surgical performance

of medical students, junior residents (post-graduate year [PGY] 1 to 3), senior residents (PGY 4
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to 6), and neurosurgeons.*’ The method by which this system was developed allows us to
understand the logic behind its decision making, making it a practical tool for scoring trainee
surgical simulation performance. In fact, it has been used to score participant performance in a

variety of RCTs.4*%

Intelligent Tutoring Systems

Intelligent tutoring systems are computer-based systems that leverage Al techniques to provide
feedback to learners.”’”? These systems can simulate one-one-one learning, helping trainees
acquire skills and knowledge relevant to their field.”!”* In the medical field, intelligent tutoring
systems have proven useful in a variety of areas, including clinical reasoning, diagnoses,
treatment planning, and skills training.”! In surgery, these systems can be used to quantitatively
assess performance, continuously identify errors, and provide real-time feedback to mitigate
these errors.*647

The Virtual Operative Assistant (VOA) was created by our group in 2020 to teach bimanual
psychomotor skills.* By applying a linear support vector machine and Al-derived metrics to
process NeuroVR performance data, the VOA calculates learner scores and classifies trainee
performance as expert or novice.*¢ With this scoring, it provides trainees with instructions to
improve their performance following their completion of a simulation task.*® The VOA provides
instructions on four Al-selected metrics: two safety metrics — bipolar forceps force application
and rate of bleeding, and two instrument movement metrics — instrument tip separation distance
and bipolar forceps acceleration.* Trainees are required to master the metrics pertaining to safety
before moving on to the instrument movement metrics.*¢ In an RCT, medical students trained
using the VOA outperformed those taught by a remote human expert instructor, indicating the

VOA’s utility as a surgical teaching tool.** However, as previously discussed, principles of
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deliberate practice suggest that surgical training applications that provide real-time assessment
and feedback are preferable for learner acquisition of knowledge and skills,® as they better
mimic the dynamic operating room environment and trainee-instructor relationship. The VOA
lacks the ability to continuously assess performance and provide real-time feedback to trainees,
limiting its pedagogical utility.

Due to these shortcomings, the ICEMS was developed by our group.*’ This application uses an
LSTM to intraoperatively assess and score trainee NeuroVR performance in five Al-selected
metrics every 0.2 seconds.*” These metrics consist of two safety metrics — tissue injury risk and
bleeding risk — and three coaching metrics — instrument tip separation distance, bipolar forceps
force application, and ultrasonic aspirator force application.*’ Using the NeuroVR performance
data of 14 neurosurgeons, an LSTM established expert benchmarks that could then be used to
detect errors in trainee performance.*’ The system provides real-time, auditory feedback to
trainees following metric error detection; an error is defined as a trainee’s score differing from
the expert benchmark by one standard deviation for more than one second.*’

A previous RCT ran by our group demonstrated the educational utility of the ICEMS, as medical
students taught by the ICEMS outperformed those taught by an in-person expert human
instructor.* However, the expert instructors were not provided with Al-derived performance data
during this trial, relying solely on their observations, making their instructions vulnerable to
subjectivity. Additionally, a randomized cross-over trial investigated these two teaching methods
in separate training sessions. Students first learned from the ICEMS or an in-person expert
instructor before crossing over to receive the other instructional method.”® Trainees who first
received Al instruction followed by expert instruction showed a decline in their surgical

performance after the two sessions, while the surgical performance of those taught by an expert
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instructor before receiving Al instruction significantly improved.?® This study explored the effect
of the subsequent application of these instructional methods, but not their combination. The
findings suggest that human expert instruction and Al instruction may each provide trainees with
knowledge pertaining to different aspects of surgical expertise, pointing to the potential utility in
combining these two teaching methods. In addition, a cohort study investigating the unintended
effects of Al instruction on surgical performance showed that intelligent tutoring may lead to
suboptimal outcomes in several efficiency-related metrics,* indicating that human experts may
be necessary to contextualize the feedback provided by intelligent tutoring systems to create an
optimal learning environment. A recent RCT from our center sought to combine the strengths of
Al instruction with human expert instruction in a simulation environment. This investigation
found that Al-augmented personalized instruction enhanced ICEMS scores and resulted in
improved skill transfer to a more realistic simulated scenario compared to Al tutor instruction
alone. These results emphasize the critical role that human educators play in Al-based surgical
teaching.’® However, this study did not investigate the effect of augmenting human instruction
with Al-derived error data on the frequency of instructions provided and technical skill
improvement. As such, we aim to assess the pedagogical impact of Al-augmented personalized
instruction on the frequency of feedback instructions and on the results of these specific surgical
instructions on trainee surgical performance using the NeuroVR simulation platform.
RATIONALE

Proper surgical technical skills are essential for safe operative procedures,® %1213 but they are
often acquired in high-stakes, stressful environments that are not conducive to methods of

6,13,30,31,34,40,

deliberate practice. 5356 This challenge in surgical resident training is exacerbated by a

lack of objective, standardized assessments of performance within surgical residency program
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curricula.!'?73! Virtual reality simulators combined with intelligent tutoring systems offer a
promising alternative method for acquiring and assessing surgical skills, and are slowly
becoming more common for teaching surgical trainees.***° A previous study found that Al-
augmented personalized instruction during simulated VR brain tumor resection procedures
improved trainee surgical performance and skill transfer compared to Al tutor instruction alone.>
However, this study focused on the ICEMS-derived performance scores and did not consider

other aspects of performance. Therefore, the effect of this instructional methodology on the

frequency of feedback instructions and on technical skill performance remains unknown.

THE STUDY HYPOTHESIS

Our primary hypothesis is that Al-augmented personalized instruction will lead to a significantly
lower number of feedback instructions compared with Al tutor instruction. Our secondary
hypothesis is that Al-augmented personalized instruction will result in superior technical skills
compared with Al tutor instruction. These hypotheses are based on adult learning theories that
highlight the importance of personalized learning and contextualization to optimize learning

outcomes.”*%°

THE STUDY OBJECTIVES

To the best of our knowledge, there are no previous investigations into the prospect of combining
Al-derived quantitative data with human expert instruction on the frequency of feedback
provided to a trainee, nor on the improvement in a trainee’s technical skill performance, in a
simulation environment.

Therefore, the first coprimary objective of this thesis is to determine the effect of providing
human expert instructors with ICEMS quantitative performance data on the number of

instructions received by each trainee during simulation training. The second coprimary objective
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is to determine the effect of this same instructional methodology on trainee technical skill level,

measured by their performance in various metrics recorded by the NeuroVR system.
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HIGHLIGHTS

o Intelligent tutoring systems result in limited surgical skill improvement
e Learners acquire simulated surgical skills when taught by human instructors
e Feedback frequency decreases when personalized instruction is provided

o Instructions informed by artificial intelligence data improve surgical performance

ABSTRACT

Objective: To determine whether personalized feedback from a human instructor receiving
artificial intelligence (Al) error data will result in reduced feedback frequency and improvement
of surgical skill compared to Al instruction. We hypothesized that Al-augmented personalized

instruction would result in reduced feedback frequency and improvement in technical skill.

Design: This cross-sectional cohort study was a follow-up of a randomized controlled trial.
Participants were stratified by year in medical school and block randomized to receive one of
three educational interventions as they performed simulated procedures on the NeuroVR: Al
tutor instruction, scripted human instruction, and Al-augmented personalized instruction.
Performance was assessed by the feedback frequency and technical skill performance metrics.

ClinicalTrials.gov ID: NCT06273579.

Setting: Neurosurgical Simulation and Artificial Intelligence Learning Centre, McGill

University, Montreal, Canada.
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Participants: Volunteer sample of medical students from four Quebec universities in
preparatory, first, or second year without prior use of the NeuroVR. Eighty-eight students
participated in the study with 87 included in the final analysis; one was excluded due to technical

1ssues.

Results: By the third repetition, the Al-augmented personalized instruction group received
significantly fewer total instructions (incidence rate ratio [IRR], 1.50 [95% CI, 1.16 to 1.94]
instructions; P <.001), and high aspirator force instructions (IRR, 1.71 [95% CI, 1.15 to 2.55]
instructions; P = .002), compared to the second repetition. Compared to Al tutor instruction, Al-
augmented personalized instruction resulted in a significantly lower rate of healthy tissue
removal (P = .01), instrument tip separation distance (mean ratio, 1.25 [95% CI, 1.05 to 1.50]
mm; P =.008), and aspirator force (mean ratio, 1.68 [95% CI, 1.23 to 2.31] N; P <.001). Al-
augmented personalized instruction showed a significant improvement from baseline in all

subsequent repetitions for all performance metrics.

Conclusions: This cohort study demonstrated that Al-augmented personalized instruction

resulted in less frequent feedback and an improvement in simulated surgical skills.

KEYWORDS: artificial intelligence-augmented instruction; surgical simulation; surgical

education; technical skill; neurosurgical virtual reality, performance metrics
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INTRODUCTION

Mastery of surgical technical skill is essential to mitigate the risk of surgical errors.®'%!%13 The
current pedagogical model for surgical training involves the constant interplay between the
educator and the trainee in a dynamic operative environment.®® These real-time communications
rely on the subjective observations of human instructors for continuous assessment and
immediate, personalized, actionable feedback to guide technical skill development and error
mitigation.>* This reliance on subjective, qualitative performance data highlights a lack of
objective, standardized instructional methodologies and assessments of surgical trainee
performance.!!?731-% Intelligent tutoring systems utilizing artificial intelligence (Al) to provide
personalized and adaptive instructions to learners may help overcome these limitations due to
their capacity to process and analyze large quantities of data to objectively assess

performance.**

Intelligent tutoring systems have shown potential in teaching trainees surgical techniques and
evaluating their competency using a data-driven approach in simulation environments.*>#7 A
randomized controlled trial (RCT) utilizing the Virtual Operative Assistant intelligent tutoring
system, employing only post-hoc Al feedback, significantly improved simulated surgical
performance.****® This system lacks the capacity to continuously monitor intraoperative skills or
provide real-time feedback. The Intelligent Continuous Expertise Monitoring System (ICEMS) is
a multi-algorithm Al system specifically designed to address these issues by employing
quantitative data to continuously assess trainee performance and provide instructions to mitigate

and reduce trainee errors based on real-time risk detection.*’ Developed using a long short-term

memory network and based on objective, Al-derived metrics, the ICEMS can be used to detect
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errors in surgical performance.*” The ICEMS was trained on neurosurgeons’ (experts) and
medical students’ (novices) operative data and demonstrated a granular differentiation across
levels of expertise, and has shown face, content, construct, and predictive validity.*”*® The
NeuroVR, a high-fidelity virtual reality (VR) surgical simulator equipped with haptic feedback
for brain tumor resection procedures, was used to develop the ICEMS.”> The ICEMS can be

applied to any simulation system.*’

An RCT demonstrated that the ICEMS improved simulated surgical performance more than
skilled instructors, indicating the pedagogical utility of the system.*> Another crossover RCT
found that trainee performance was significantly improved when instructed by a skilled educator
first and then followed by ICEMS instruction.®” Although this intelligent tutoring system can
provide objective feedback, it is limited to delivering specific verbal instructions, while human
educators can provide context and personalize their feedback. In a previous cohort study, this
limited variety of possible feedback instructions led to unintended outcomes in an Al-enhanced
curriculum, which negatively impacted trainee performance efficiency.*’ The results of these
studies suggest that combining a skilled instructor and an Al tutor would allow for the
contextualization of Al error data and optimize trainee performance. A recent RCT from our
center found that Al-augmented personalized instruction resulted in enhanced ICEMS scores on
a simulated subpial brain tumor practice resection scenario compared to Al tutor instruction and
scripted human instruction, along with an improved transfer of surgical technical skills to a
realistic simulated scenario.’® These results highlight that personalized expert instruction results

in enhanced surgical performance and skill transfer compared with intelligent tutor instruction,
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emphasizing the critical role of human engagement and contribution in artificial intelligence-

based surgical training.

However, this study did not investigate how Al-augmented personalized expert instruction
influenced the frequency of feedback instructions, nor the differences in trainee technical
performance between groups. Our study aimed to investigate these two components. We
hypothesized that participants receiving Al-augmented personalized instruction would (1)
receive a significantly lower number of feedback instructions compared to those receiving Al
tutor instruction, and (2) show a significantly better response to these instructions through

improvement in technical skill performance compared to those receiving Al tutor instruction.

METHODS

Participants

We conducted a planned secondary analysis using retrospective data from a previous RCT
involving 87 medical students at the Neurosurgical Simulation and Artificial Intelligence
Learning Centre, McGill University, Montreal, Canada from March to September 2024.%°
Students were recruited for a single 90-minute surgical simulation session with no follow-up.
Medical students enrolled in their preparatory, first, or second year at one of four Quebec
institutions were considered eligible for the study. The exclusion criterion was previous
experience with the NeuroVR, the VR simulator used in this study. A sample size calculation
with a power of 0.9, an effect size of 0.3, an a error probability of 0.05, and a correlation among

repeated measures of 0.5 resulted in a total of 87 participants, with 29 participants in each of
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three groups. Each participant performed the same simulated procedure with a different
instructional method. This study was approved by the McGill University Health Centre Research
Ethics Board, Neurosciences-Psychiatry and was registered on ClinicalTrials.gov on February
16, 2024 (NCT06273579). All participants signed an approved informed consent form prior to
commencing the study. This report follows the Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE)® guidelines for cohort studies and the Machine Learning to

Assess Surgical Expertise (MLASE) checklist.!®

Study Procedure and Simulation Session

Following voluntary enrollment, students were stratified according to year in medical school and
block randomized to one of three intervention arms with a 1:1:1 allocation ratio. All participants
received standardized written and verbal instructions outlining the use of the instruments, the
goal of the task, and how the session would proceed. Students were blinded to the trial’s purpose
and assessment metrics. The study utilized the NeuroVR (CAE Healthcare, Montreal, Canada), a
validated, high-fidelity VR neurosurgical simulator, on which participants performed simulated
subpial brain tumor resection procedures.’’* The simulation tasks involved the use of an
ultrasonic aspirator and bipolar forceps, each equipped with haptic feedback, to completely
resect a simulated tumor while minimizing bleeding and damage to non-pathological tissue.*31°!
All participants completed six 5-minute practice subpial resection scenarios to assess their
learning (Figure 1), followed by a 13-minute realistic scenario to assess skill transfer to a more
complex procedure (Figure 2). Between each repetition, a rest period of five minutes was

afforded to participants.’!%2
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Interventions

Participants performed their first practice resection scenario without feedback to establish their
baseline performance level. The second to fifth repetitions of the practice scenario served as a
formative assessment, during which participants received feedback only when an error was
identified by the ICEMS. Feedback methods differed between the three groups. Participants then
proceeded to perform a sixth repetition of the practice scenario without feedback as a summative
assessment of their performance. Trainees then completed one repetition of the realistic scenario
to assess skill transfer to a more complex scenario. The study procedure is outlined in Figure 3.

Participants and instructors were blinded to group assignments and study outcomes.

The instructors were senior neurosurgical residents with experience in clinical and simulated

subpial resection procedures. A senior neurosurgical consultant with extensive involvement in

VR neurosurgical simulation and clinical subpial operations identified these instructors as

competent to train novices during these simulated procedures.

Group 1: Al Tutor Instruction

Group 1 received real-time verbal feedback from the ICEMS upon metric error detection.

Group 2: Scripted Human Instruction
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Group 2 received instructions from one of two neurosurgical residents (M.A., post-graduate year
[PGY] 5; A.K.A., PGY 4) upon metric error detection by the ICEMS. Prompted by the ICEMS
using colored indicators, instructors provided real-time verbal feedback using the same wording

as the ICEMS (Table 1).

Group 3: AI-Augmented Personalized Instruction

Group 3 received instructions from a neurosurgical resident (A.A., PGY 4) upon metric error
detection by the ICEMS. Prompted by the ICEMS using colored indicators, the instructor
provided real-time personalized verbal feedback in their own words based on the trainee’s

manipulations.

Instructions were provided based on pre-selected metrics: healthy tissue injury risk, bleeding
risk, instrument tip separation distance, bipolar forceps force, and ultrasonic aspirator force. The
metrics followed a hierarchy, as employed in previous studies; if more than one error occurred
simultaneously, instructions for the metric higher in the hierarchy would be prioritized.***” The
feedback instructions provided in groups 1 and 2 and the hierarchical order of these metrics are

outlined in Table 1.

Performance Metric Extraction

During the second to fifth repetitions, the ICEMS recorded the number of instructions given for

each ICEMS metric: healthy tissue injury risk, bleeding risk, high instrument tip separation
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distance, high bipolar force, low bipolar force, and high aspirator force.***’ Following the
completion of a repetition, the number of instructions given to a participant in total and for each
metric was summed. The average number of instructions was calculated for each group for each
formative repetition of the practice scenario. During every repetition, the NeuroVR recorded
participant technical skill performance data in 20-millisecond increments (50 recordings per
second; t = 20 ms), including rate of healthy tissue removal (mm?/t), total volume of blood lost
(mm?), instrument tip separation distance in the 3D space (mm), force applied with bipolar
forceps (N), and force applied with ultrasonic aspirator (N).'%* These performance metrics were
selected based on their relation to the feedback instructions given during the session to assess
their effectiveness. The raw data were collected, and an average of 4 of the technical skill
performance metrics was calculated for each participant in each repetition. Only the final value
of total blood volume lost was utilized for each repetition, rather than taking an average. Al
tutor-automated feedback provision and data visualization were performed using MATLAB (The

MathWorks Inc., Natick, Massachusetts, USA) release 2024b.

Outcome Measures

The first coprimary outcome of this study was the number of instructions that trainees received
in total and for each ICEMS metric during each of the formative practice subpial resection
scenarios. The second coprimary outcome was trainee technical skill performance during the
practice scenarios and realistic scenario, measured using the five performance metrics recorded

by the NeuroVR.
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Statistical Analysis

Between- and within-group comparisons of the mean number of feedback instructions received
over the second to fifth repetitions of the practice resection scenario were conducted using
generalized linear mixed (GLMM) Poisson regression models for count data. Model assumptions
and the presence of possible outliers or influential observations were investigated using graphical
analyses of simulated residuals. Post-hoc pairwise comparisons were adjusted using the Siddk
method for between-group differences and the Bonferroni correction for within-group
differences. Results are reported as incidence rate ratios (IRR) and 95% confidence intervals

(CI).

Between-group comparisons of the mean values of the technical skill performance metrics at
each repetition of the practice resection scenario were conducted using a two-way mixed model
analysis of variance (ANOVA). Repeated measures ANOVA was used to investigate within-
group differences of the mean values of the technical skill performance metrics at each repetition
of the practice resection scenario. One-way ANOVA was used to compare the mean values of
each technical skill performance metric in the realistic resection scenario. Assumption of errors
of ANOVA models, including normality, homogeneity of variance, and the presence of possible
outliers or influential observations were assessed by graphical examination of model residuals.
Post-hoc pairwise comparisons of mean differences were adjusted using the Sidak method for
between-group differences and the Bonferroni correction for within-group differences. When
model residuals did not show evidence of having a Normal (Gaussian) distribution, a natural

logarithmic transformation of the values was used as the model outcome to stabilize the
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variability. A robust linear mixed model approach to the ANOVA was used when the assumption
of homogeneity of variance or residuals was violated. In cases where the normality or
homogeneity of variance assumptions were drastically violated, we used the Kruskal-Wallis test
at each repetition for between-group analysis, followed by Dunn’s test with Bonferroni
correction for multiple comparisons, and the Friedman test was used for within-group analysis,
followed by the Nemenyi test. Results are reported as estimated mean differences and 95% CI

and, in cases where a log transformation was used, as estimated ratios of geometric means and

95% CI.

Data analysis was performed using R Statistical Software (v4.3.3; R Core Team 2024)!%* from
February to May 2025. All codes were written by the authors. ANOVAs and Poisson GLMM

were implemented using the /me4 '% and glmmTMB '% R packages, respectively. The GLMM
analysis of simulated residuals was implemented using the DHARMa R package.'?” The robust

linear mixed model approach to ANOVA was done using the robustlmm R package.'*®

RESULTS

Eighty-eight medical students from four Quebec universities participated in the study.
Participants were stratified according to year in medical school and block randomized to one of
three groups. There were 31 students in the Al tutor instruction group (group 1), 29 in the
scripted human instruction group (group 2), and 28 in the Al-augmented personalized instruction
group (group 3). Due to technical issues that arose during the simulation session, data from one

participant in group 1 were excluded from the analysis. Data from 87 participants (46 [53%]
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women, 40 [46%] men, 1 [1%] unspecified; mean [SD] age, 22.7 [4.0] years) were available for

analysis, including 522 practice scenarios and 87 realistic scenarios (Table 2).

Feedback Frequency Across Simulated Practice Subpial Resections

All groups began receiving instructions in the second repetition of the practice scenario. In total,
over the second to fifth repetitions, group 1 received 1464 instructions, group 2 received 1183
instructions, and group 3 received 728 instructions. Figure 4 outlines the number of instructions
received by the groups for each metric in each repetition of the practice scenario where feedback
was given (repetitions 2 to 5). The incidence rates of instructions for each metric can be found in
Table 3. Group 1 (378 instructions) received significantly more instructions in total compared to
group 3 (262 instructions) by the second repetition (IRR, 1.52 [95% CI, 1.03 to 2.23]
instructions; P = .03). Group 2 (308 instructions) received significantly more feedback
instructions in total compared to group 3 (175 instructions) by the third repetition of the practice
scenario (IRR, 1.74 [95% CI, 1.15 to 2.63] instructions; P =.001) (Figure 5A). Pertaining to
bleeding risk instructions, group 1 (54, 46, and 61 instructions, respectively) received
significantly more feedback compared to group 3 (17, 16, and 13 instructions, respectively) in
the second (IRR, 5.55 [95% CI, 1.22 to 25.15] instructions; P = .01), fourth (IRR, 5.02 [95% CI,
1.09 to 23.19] instructions; P = .03), and fifth (IRR, 8.20 [95% CI, 1.73 to 38.77] instructions; P
=.001) repetitions, and group 2 (46 and 49 instructions, respectively) received significantly more
feedback than group 3 (17 and 13 instructions, respectively) in the second (IRR, 4.89 [95% (I,
1.06 to 22.53] instructions; P = .04) and fifth (IRR, 6.81 [95% CI, 1.41 to 32.80] instructions; P

=.006) repetitions (Figure 5C). Group 1 (97 instructions) received significantly more
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instructions relating to high bipolar force than group 3 (43 instructions) in the fourth repetition of
the practice scenario (IRR, 2.13 [95% CI, 1.03 to 4.39] instructions; P = .04) (Figure 5E). By the
fourth repetition of the practice scenario, groups 1 (113 instructions) and 2 (111 instructions)
both received significantly more high aspirator force feedback instructions than group 3 (51
instructions; IRR, 1.99 [95% CI, 1.10 to 3.61] instructions; P =.01; and IRR, 2.13 [95% CI, 1.17
to 3.87] instructions; P = .004, respectively) (Figure 5G). Only group 3 received significantly
fewer instructions across repetitions of the practice scenario. By the third repetition, this group
received significantly fewer total instructions (175 instructions; IRR, 1.50 [95% CI, 1.16 to 1.94]
instructions; P <.001) and instructions relating to aspirator force (70 instructions; IRR, 1.71
[95% CI, 1.15 to 2.55] instructions; P = .002) compared with the second repetition (262 and 120

instructions, respectively; Figure SA and 5G).

Technical Skill Performance Across Simulated Practice Subpial Resections

Learning curves were assessed for the five technical skill performance metrics. The estimates for
each metric analyzed using parametric statistical methods can be found in Table 4. No
statistically significant differences were observed between the groups at baseline performance
(first repetition) in all five performance metrics. Dunn’s tests with Bonferroni correction
indicated that group 3 demonstrated a significantly lower rate of healthy tissue removal
compared to group 1 by the third (P = .01) repetition of the practice scenario, and that group 3
had significantly less bleeding than group 1 in the second (P = .02) and fourth (P = .02)
repetitions of the practice scenario (Figure 6A-B). In addition, a pairwise test with Siddk

adjustment indicated that group 3 demonstrated a significantly lower instrument tip separation
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distance by the second repetition of the practice scenario compared with group 1 (mean ratio,
1.25[95% CI, 1.05 to 1.50] mm; P =.008) and compared with group 2 in the third (mean ratio,
1.20 [95% CI, 1.00 to 1.44] mm; P =.049) and fourth (mean ratio, 1.22 [95% CI, 1.02 to 1.46]
mm; P =.03) repetitions of the practice scenario. This same statistical test found that group 2 had
a significantly lower instrument tip separation distance than group 1 during the fifth repetition
(mean ratio, 1.33 [95% CI, 1.11 to 1.59] mm; P <.001; Figure 6C). No other statistically
significant differences were observed between group 1 and 2 in the other performance metrics. A
pairwise test with Siddk adjustment also indicated that, by the third repetition, group 3 used
significantly less force with the ultrasonic aspirator than group 1 (mean ratio, 1.68 [95% CI, 1.23
to 2.31] N; P <.001) and group 2 (mean ratio, 1.50 [95% CI, 1.09 to 2.06] N; P =.007; Figure
6E). No statistically significant differences were found between the groups in the force applied
using the bipolar forceps (P > .05), as indicated by a robust linear mixed model regression
(Figure 6D). Compared to baseline performance, by the second repetition of the practice
scenario, group 1 significantly decreased the distance between their instruments (mean
difference, 2.28 [95% CI, 0.57 to 3.99] mm; P = .001). This finding was also observed for group
2 (mean difference, 3.47 [95% CI, 2.30 to 4.64] mm; P <.001) and group 3 (mean ratio, 1.55
[95% CI, 1.36 to 1.77] mm; P < .001; Figure 6C), as indicated by a pairwise test with Bonferroni
adjustment. This same test found that, compared to baseline performance, groups 1, 2, and 3
significantly lowered the force applied with the bipolar forceps (mean difference, 0.08 [95% CI,
0.02 to 0.13] N; P <.001; mean difference, 0.13 [95% CI, 0.07 to 0.18] N; P <.001; and mean
ratio, 1.38 [95% CI, 1.13 to 1.67] N; P <.001, respectively) by the second repetition (Figure
6D). Nemenyi test showed that group 3 also achieved a significantly lower rate of healthy tissue

removal (P <.001) and volume of blood lost (P <.001) by the second repetition compared to
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baseline, and a pairwise test with Bonferroni correction found that this group demonstrated a
lower force applied with the ultrasonic aspirator (mean difference, 0.05 [95% CI, 0.02 to 0.07]
N; P <.001) by the second repetition compared to baseline (Figure 6A-B, 6E). Other

improvements from baseline performance and between specific trials are shown in Figure 6.

Technical Skill Transfer to the Simulated Realistic Subpial Resection

The estimates for each metric analyzed using parametric statistical methods can be found in
Table 5. Following the completion of the realistic scenario, a pairwise test with Sidak adjustment
indicated that group 3 applied significantly less force with the ultrasonic aspirator than group 1
(mean difference, 0.04 [95% CI, 0.01 to 0.07] N; P =.01) (Figure 7E). No other statistically

significant differences were found between the groups.

DISCUSSION

To the authors’ knowledge, this cohort study is the first investigation to demonstrate the
pedagogical impact of Al-augmented personalized instruction on the frequency of feedback
instructions and on the results of these specific surgical instructions on trainee surgical
performance. A previous RCT used ICEMS scores to explore the effect of the three different
instructional methods utilized in this investigation on trainee skill acquisition and skill transfer.>
This study builds on this investigation, focusing on the frequency of instructions provided and

their impact on changes in technical skill.
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Consistent with our first hypothesis, participants receiving Al-augmented personalized
instruction received fewer total instructions compared with Al tutor and scripted human
instruction. Since feedback was only provided when the ICEMS detected an error, fewer
feedback instructions suggests that Al-augmented instructions may be more comprehensible and
provide more clarity to trainees to understand how to correct errors in their performance. In the
second repetition, when trainees first began receiving feedback, the Al-augmented personalized
instruction group received significantly fewer instructions compared to those trained by the Al
tutor, providing evidence for this methodology’s immediate efficacy for teaching trainees how to
correct errors. This group was the only group to receive significantly fewer total instructions
throughout the session, suggesting that the information in the instructions provided sufficient

context and was actionable in real time.

The Al-augmented personalized instruction group had significantly lower values compared to the
Al tutor instruction group for both risk metrics assessed and two of the three coaching metrics,
consistent with our second hypothesis. Except for instructions pertaining to bipolar force, all the
instructions given aim to decrease values in the technical skill performance metrics (Table 1).
The absence of significant differences in the bipolar force applied may be attributable to
participants receiving instructions to increase or decrease the force applied with the bipolar
forceps throughout the session. This may have allowed participants in all groups to learn the
ideal amount of force application with this instrument. Employing a similar methodology for
teaching the other metrics, where trainees are made aware of appropriate changes to performance
as much as they are made aware of errors, has proven beneficial for surgical skill acquisition and

may be an avenue to explore in future studies involving the ICEMS.!%
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The scripted human instruction group did not consistently receive fewer instructions or exhibit
significantly better technical skill performance compared with the Al tutor instruction group.
These groups received instructions using identical wording, suggesting that the instructions
programmed into the ICEMS may not provide sufficient information to allow trainees to learn to
consistently correct errors. This is further supported by the Al-augmented personalized
instruction group’s fewer instructions received and outperformance of both other groups in
several metrics. Investigations into the instructions that elicited the most appropriate changes in
performance are presently being conducted using a series of Large Language Models (LLMs) to
further optimize both the ICEMS and human expert instructions to enhance performance

outcomes.!?

The results indicate that correcting performance relating to a high amount of force applied with
the ultrasonic aspirator may be most effectively accomplished with Al-augmented instructions.
This group received fewer instructions for this metric and outperformed both other groups during
the summative assessment in repetition six, and group 1 during the realistic scenario. Studies
focused on exploring the utility of LLMs to understand the reasons for the success of Al-
augmented personalized instructions for this particular metric may further enhance the actionable

vocabulary of the ICEMS.

These findings have supported the hypothesis that providing skilled instructors with Al-
generated error data to facilitate the provision of personalized, continuous, contextualized

feedback improves learning in a simulated surgical environment. Further research is required to
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determine whether these findings can be generalized to more realistic surgical settings, and such
studies using an ex vivo animal model are currently underway.”>!"!"113 This cohort study
demonstrates the potential for Al-augmented personalized instruction to optimize trainee
assessment, teaching, and error mitigation in the operating room environment, helping to lay the
foundations for the development of future intelligent human operating rooms powered by Al

technology.

LIMITATIONS

Intelligent tutoring systems cannot completely replicate the communication interchange between
a surgical educator and a learner in complex human operating settings.'!* This study was carried
out using a small sample of medical students in their preparatory, first, or second year, and
findings cannot be generalized to senior medical students or surgical residents. However, the
results of a series of simulation studies has demonstrated that using medical students with
minimal surgical experience has provided valuable insights.*>***7 Investigations using
neurosurgical residents, fellows, and neurosurgeons are in preparation involving ex vivo models,
but the limited number of participants available may limit the ability of these studies to achieve
sufficient power to detect statistically significant differences unless multiple teaching centers are

involved.

CONCLUSION

This cross-sectional cohort study demonstrated that artificial intelligence-augmented

personalized instruction resulted in less frequent feedback and improved surgical technical skills.
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These results continue to outline the importance of human educator engagement and the critical
role they play in developing intelligent tutoring systems for surgical education applicable to the

human operating room.
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THESIS SUMMARY
Contributions to Original Knowledge
This study contributes to the understanding of the best practices for surgical education,
specifically for providing intraoperative instructions to surgical trainees, in the following way:
1. To our knowledge, this study is the first to investigate the effect of augmenting human
instruction using Al-derived error data on the frequency of feedback instructions and on

trainee technical skill development in a VR simulation environment.

Discussion

This thesis aimed to investigate the effect of Al-augmented personalized instructions on feedback
frequency and trainee technical skill performance. We conducted a secondary analysis of a
single-blinded parallel-design RCT involving 88 medical students from four Quebec universities.
These students performed subpial brain tumor resection procedures on the NeuroVR while
receiving instructions, and the instructional methodologies differed according to their group
allocation. The number of feedback instructions received by each trainee, as well as their
technical skill performance metrics during the operation, were measured for analysis.

The first coprimary objective of this thesis was to determine the effect of providing human expert
instructors with ICEMS quantitative performance data on the number of instructions received by
each trainee during simulation training. Of the three intervention groups, only the Al-augmented
personalized instruction group received significantly fewer total instructions and instructions
relating to high aspirator force between the second repetition and the three subsequent formative
repetitions of the practice scenario. This suggests that the instructions were clear and more
actionable throughout the session than the other two instructional methodologies (Figure SA,

5G). Additionally, consistent with our first hypothesis, the Al-augmented personalized



55

instruction group received fewer total instructions compared to the Al tutor instruction and
scripted human instruction groups (Figure 5A). Instructions were only provided following metric
error detection by the ICEMS; thus, receiving less instructions meant that less errors were made,
suggesting a better understanding of the feedback provided. The Al-augmented personalized
instruction group also received significantly fewer total instructions in the second repetition,
when participants first began receiving feedback, compared to the Al tutor instruction group.
This suggests that the instructions were immediately more comprehensible and more effective in
reducing errors (Figure 5A).

The second coprimary objective of this thesis was to determine the effect of Al-augmented
personalized instruction on trainee technical skill level, using metrics recorded by the NeuroVR
system. Al-augmented personalized instruction was the only group to exhibit consistent technical
skill improvement from baseline. This group demonstrated improved performance in all five
technical skill metrics in all subsequent repetitions of the practice scenario, further implying that
Al-augmented personalized instructions led trainees to better understand how to fix their errors
(Figure 6). Furthermore, Al-augmented personalized instruction resulted in lower technical skill
performance metric values compared to Al tutor instruction for both risk assessment metrics
(Figure 6A-B) and two of the three coaching metrics (Figure 6C, 6E), consistent with our second
hypothesis. Besides instructions relating to bipolar force application, the instructions directed
participants to achieve lower values in the technical skill performance metrics. Therefore,
achieving lower values in these metrics suggests a better understanding of the feedback provided.
There are two instructions associated with the bipolar force application metric — one notifying
trainees when they apply too much force, and one when they apply too little — as deviances in

either direction pose a significant risk to patient safety (Table 1).4”** In comparison to the other
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metrics, where only high values trigger the provision of an instruction, the dual instructions
relating to bipolar force may have resulted in trainees learning the ideal amount of force to apply,
providing a possible explanation for the lack of significant differences between the three
intervention groups for this metric. This finding points to the potential benefit of applying
operant conditioning theories to the ICEMS teaching methods to improve technical skill
development, which have already proven useful for surgical skill acquisition.!*”

Scripted human instruction did not consistently result in a reduced feedback frequency, nor in an
improvement in technical skill performance compared to Al tutor instruction (Figure 5, 6). These
groups received instructions in the same wording (Table 1), implying that the feedback provided
by the ICEMS may need to be modified in order for trainees to exhibit the intended changes to
their technical skill performance. This is further supported by the Al-augmented personalized
instruction group’s outperformance of both groups in the frequency of feedback instructions and
in technical skill performance. A study using Large Language Models (LLMs) is currently
underway to understand the specific instructions that elicited the most appropriate responses by
trainees.!''°

A previous RCT demonstrated that feedback provided by an expert instructor based solely on the
instructor’s observations was inferior to Al tutor instruction in improving surgical performance.*?
The results of a cross-over RCT showed that performance significantly improved when trainees
first received expert instruction followed by Al tutor instruction.’’ Additionally, the primary
investigation of the RCT outlined in this thesis determined that Al-augmented personalized
instruction resulted in a significantly enhanced surgical performance compared to both other
groups.>® The finding from these three studies, as well as the results in this thesis, support the

notion that resident technical skill development in the operating room could benefit from
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combining human instructors with real-time quantitative data from an intelligent system.
Implementing these systems could improve technical skill acquisition and assessment, posing a

great advantage to surgical residency programs.

Limitations

A sample of medical students in their preparatory, first, or second year from four Québec
universities was used for this study. These findings therefore cannot be generalized to the target
population (ie, surgical residents), nor can they be applied to trainees in other institutions.
However, the low availability of surgical residents poses difficulties in achieving statistical
power in RCTs. Additionally, the junior medical students in this sample are still early in their
medical careers, meaning they have less clinical experience than their senior counterparts. While
this means that the findings cannot be applied to trainees at the residency level, this is a
favourable characteristic for an RCT as it reduces the chance of introducing confounding factors
that could make participants less comparable to one another (eg, prior experience in a surgical
rotation). Finally, several previous simulation studies have employed a sample of junior medical
students and shown meaningful results.*>**#*7 Nevertheless, future studies should be conducted
with trainees at the residency level to determine whether similar conclusions are made, as the
aim of this study and similar investigations is to inform the use of simulation for technical skill
development in surgical residency programs.

While the NeuroVR platform has been previously validated,*”*® the replication of neurosurgical
procedures and the handling of biological tissues can only be simulated by these VR systems; it
is never exactly the same as real-life procedures.”! As such, further investigations are required to
determine whether these findings can be applied to more realistic operating room environments.

One such study is currently underway, utilizing a more realistic ex vivo animal model.



Future Directions

As previously discussed, this investigation demonstrated that Al-augmented personalized
instruction resulted in lower technical skill performance metric values, suggesting a better
understanding of the instructions provided. However, it has not been determined whether these
technical skills are consistent with an expert-level performance. Future studies may wish to
compare the technical abilities of trainees taught by Al-augmented personalized instruction to
those of expert surgeons using the NeuroVR platform.

The Al-augmented personalized instruction group achieved a lower feedback frequency and
lower performance metric values for ultrasonic aspirator force application compared to both
other groups in summative assessment repetition six and compared to the Al tutor instruction
group in the realistic scenario (Figure 5G, 6E, 7E). These findings suggest that Al-augmented

personalized instructions provided details that were essential to correcting errors in this metric
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but were missing from the other groups’ instructions. As a potential starting point for optimizing

the teaching capabilities of the ICEMS, future studies can employ LLMs to identify the most
effective instructions relating to this metric and later expand this investigation to include the

other metrics. These findings could be used to inform the teaching of surgical skills in a

simulated environment using the ICEMS, in the human operating room with an expert instructor,

or for the development of future intelligent human operating rooms.

Conclusion

In this cross-sectional cohort study, Al-augmented personalized instruction resulted in a reduced

feedback frequency and an improvement in technical skill performance compared to Al tutor

instruction. These results show the value of employing quantitative data for surgical training and

assessment in surgical residency programs. The potential benefits of augmenting human



59

instruction with Al-derived error data to rectify deficits in performance are outlined, and further
investigations are required to determine their transferability to the human operating room

environment.
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FIGURES

Figure 1. Practice subpial tumor resection scenario. (A) Start of the practice subpial tumor
resection scenario. Yellow area represents the tumor and white area represents healthy brain
tissue. Instrument on the left is the bipolar forceps, and instrument on the right is the ultrasonic
aspirator. (B) Participant lifts the pia using the bipolar forceps to expose the underlying tumor,
and the ultrasonic aspirator to resect the tumor. (C) Appearance following resection of the
superficial tumor. Deeper tumor areas shown by remaining yellow tissue. (D) Participant exposes
deep cerebral vessel (red). (E) Participant uses the bipolar forceps to cauterize a bleeding point.
(F) Complete resection of the tumor.
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Figure 2. Realistic subpial tumor resection scenario. (A) Start of the realistic subpial tumor
resection scenario. Off-white area represents the tumor and pink area represents healthy brain
tissue. Instrument on the left is the bipolar forceps, and instrument on the right is the ultrasonic
aspirator. (B) Participant lifts the pia using the bipolar forceps to expose the underlying tumor,
and the ultrasonic aspirator to resect the tumor. (C) Participant causes minor bleeding from the
tumor while using the ultrasonic aspirator. (D) Participant uses the bipolar forceps to cauterize a
bleeding point. (E) Participant causes major bleeding from the healthy tissue while using the
ultrasonic aspirator. (F) Complete resection of the tumor.
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second to fifth repetitions of the practice scenario. Metrics are color coded (see legend). X-axis

represents the repetition number. Colored stacked bars represent the number of instructions for
each ICEMS metric. Instructions were given upon metric error detection by the ICEMS. Total
number of instructions are indicated in bold above each bar. Abbreviations: Al, artificial

intelligence; ICEMS, Intelligent Continuous Expertise Monitoring System.
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Figure 5. The mean total number of instructions and mean number of instructions in each
ICEMS performance metric across the second to fifth repetitions of the practice scenario. Groups
are color coded (see legend). The X-axis represents the repetition number. Points represent group
means and error bars represent standard errors. Black horizontal brackets indicate statistically
significant differences between groups (P <.05) during a given repetition. Asterisks indicate
statistically significant differences from the baseline (P < .05) for that group. Abbreviations: Al,
artificial intelligence; ICEMS, Intelligent Continuous Expertise Monitoring System.
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number. Points represent group means and error bars represent standard errors. Since the
simulator records the metrics at a frequency of 50 Hz, the unit of time (t) is equal to 20 ms. Black
horizontal brackets indicate statistically significant differences between groups (P <.05) during a
given repetition. Within-group differences are represented by horizontal brackets in the
respective color for that group (P <.05). Abbreviations: Al, artificial intelligence.
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significant differences between groups (P < .05). Abbreviations: Al, artificial intelligence.
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Metric

ICEMS Instruction

1. Healthy Tissue Injury Risk

“Try to avoid damaging the healthy brain
surrounding the tumor.”

2. Bleeding Risk

“Careful control of bleeding will improve
your performance.”

3. Instrument Tip Separation Distance

“Keeping your instruments closer together
will improve your performance.”

4. High Bipolar Force Application

“Try to decrease the amount of force you are
applying with your bipolar.”

5. Low Bipolar Force Application

“You can improve your performance by
applying more force with your bipolar.”

6. High Aspirator Force Application

“Try to decrease the amount of force you are
applying with your aspirator.”

Table 1. Metrics assessed by the ICEMS in hierarchical order, and their corresponding

instructions.*’#

Abbreviation: ICEMS, Intelligent Continuous Expertise Monitoring System.
2 The right column shows the instructions given to group 1 and 2 upon metric error detection by the ICEMS. If the
ICEMS identifies more than one error simultaneously, it is programmed to provide instruction on the metric higher

in the hierarchy.
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Group 1 Group 2 Group 3 All participants
Al tutor Scripted human Al-augmented (n=287)
instruction instruction personalized
(n=30) (n=29) instruction
(n=28)
Age, mean = SD (range) 21.842.4 (18-27) 22.6+4.4 (18-38) 23.9+4.8 (19-37) 22.7£2.4 (18-38)
Sex
Female 18 16 12 46
Male 12 13 15 40
Prefer not to say 0 0 1 1
Gender
Woman 18 16 12 46
Man 12 13 15 40
Prefer not to say 0 0 1 1
Undergraduate medical
training level
Preparatory 25
First 15 14 13 42
Second 6 7 20
Institution
McGill University 11 15 14 40
Université de Montréal 12 7 6 25
Université de Sherbrooke 4 6 7 17
Université Laval 3 1 1 5
Handedness
Right 28 25 24 77
Left 2 3 4 9
Ambidextrous 0 1 0 1
Interest in pursuing surgery, 4 (2-5) 4.1 (2-5) 3.9 (2-5) 4 (2-5)
mean (range)®
Completed surgical
rotation/clerkship/shadowing
Yes 12 10 11 33
No 18 19 17 54
Plays video games
Yes 8 9 13 30
No 22 20 15 57
Played musical instruments in
last 5 years
Yes 9 9 13 30
No 21 20 15 56
Participated in activities that
require hand dexterity
Yes 8 12 11 31
No 22 17 17 56
Previously used VR surgical
simulation
Yes 1 2 5 8
No 29 27 23 79

Table 2. Demographic characteristics of included study participants.
Abbreviations: Al, artificial intelligence; VR, virtual reality
2Rated on a 5-point Likert scale, with 1 indicating less interest and 5 indicating more interest.
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Incidence Rate (IR) [SE]

Instrument . .
Healthy Bleeding  Tip High Low High All Metrics
Tissue . . Bipolar Bipolar Aspirator .
Injury Risk Risk Sefparatlon Force Force Force Combined
Group Distance
Repetition 2
1 0.15[0.07] 0.88[0.28] 1.03[0.22] 3.2410.50] 0.59[0.15] 3.8410.47] 12.81 [1.18]
2 0.07[0.04] 0.78 [0.26] 0.79[0.19] 2.26 [0.38] 1.00[0.22] 3.9410.49] 10.24 [0.96]
3 0.11 [0.07] 0.16 [0.07] 0.83 [0.20] 1.68 [0.31] 0.65[0.16] 3.92[0.50] 8.4510.84]
Repetition 3
1 0.16 [0.08] 0.8510.27] 1.00[0.22] 2.24[0.37] 0.80[0.18] 3.8410.47] 11.63[1.09]
2 0.07[0.04] 0.8410.28] 0.68 [0.17] 2.20[0.37] 0.81[0.19] 3.81[0.48] 9.8310.93]
3 0.008 0.20[0.08] 0.48 [0.14] 1.45[0.28] 0.44[0.13] 2.29[0.34] 5.65[0.61]
[0.009]
Repetition 4
1 0.093[0.05] 0.7510.24] 1.00 [0.22] 2.64 [0.42] 1.12[0.23] 3.32[0.42] 11.56 [1.08]
2 0.091[0.05] 0.67[0.23] 0.71 [0.18] 1.87[0.33] 1.14 [0.24] 3.55[0.45] 9.38[0.90]
3 1.24E1 0.15[0.07] 0.38 [0.12] 1.24[0.25] 0.77[0.18] 1.67 [0.28] 4.84 [0.55]
[3.17E7]
Repetition 5
1 0.1410.07] 0.9910.32] 0.95[0.21] 2.64[0.42] 0.85[0.19] 4.14 [0.50] 12.58 [1.16]
2 0.050[0.03]  0.8310.27] 0.58 [0.15] 1.76 [0.31] 0.67[0.16] 3.1710.42] 8.30[0.81]
3 0.033 [0.02]  0.12[0.06] 0.35[0.11] 1.30 [0.26] 0.44 [0.13] 1.67 [0.28] 4.55[0.52]

Table 3. Incidence rates and standard errors of instructions for six ICEMS metrics received

during the second to fifth repetitions of the practice resection scenario.?

Abbreviation: ICEMS, Intelligent Continuous Expertise Monitoring System.
2 Estimates are from the between-group statistical analyses of these ICEMS metrics.



Estimated Geometric Mean (EGM) [SE]

Instrument Tip Force Applied Force Applied
Separation with Bipolar with Ultrasonic

Group Distance (mm) Forceps (N) Aspirator (N)
Repetition 1

1 11.790.61] 0.43 [0.02]° 0.16 [0.01]

2 11.84 [0.63] 0.43 [0.02]° 0.15[0.01]

3 11.76 [0.63] 0.44 [0.021> 0.16 [0.01]
Repetition 2

1 9.52 [0.50] 0.36 [0.02]° 0.13[0.01]

2 8.33[0.44] 0.30 [0.02]> 0.11[0.01]

3 7.59 [0.41] 0.32[0.02]> 0.11[0.01]
Repetition 3

1 8.84 [0.46] 0.33 [0.02]> 0.13[0.01]

2 8.20[0.43] 0.31[0.02]> 0.12 [0.01]

3 6.84 [0.37] 0.27 [0.02]> 0.08 [0.01]
Repetition 4

1 8.78 [0.46] 0.33 [0.02]> 0.13[0.01]

2 7.69 [0.41] 0.29 [0.021> 0.11[0.01]

3 6.32 [0.34] 0.26 [0.02]> 0.07 [0.01]
Repetition 5

1 9.87[0.51] 0.36 [0.02]° 0.14 [0.01]

2 7.42 [0.39] 0.28 [0.02]> 0.11[0.01]

3 6.62 [0.36] 0.27 [0.02]> 0.07 [0.01]
Repetition 6

1 9.82 [0.51] 0.37[0.02]° 0.14 [0.01]

2 8.32 [0.44] 0.30[0.02]> 0.12 [0.01]

3 7.10[0.38] 0.28 [0.02]> 0.08 [0.01]

Table 4. Estimated geometric means and standard errors of technical skill performance metrics

over six repetitions of the practice resection scenario.?
2 Only metrics analyzed using parametric statistical methods are included. Estimates are from the between-group

statistical analyses of these technical skill performance metrics.
b Estimated marginal mean (EMM) [SE].



Estimated Marginal Mean (EMM) [SE]

Instrument Tip Force Applied fv(::lf ¢ Applied
Separation with Bipolar .
Distance (mm) Forceps (N) Ultrasonic
Group Aspirator (N)
1 15.51 [1.28] 0.40 [0.02] 0.120.01]
2 13.92 [1.30] 0.34 [0.02] 0.11 [0.01]
3 12.16 [1.32] 0.34 [0.02] 0.08 [0.01]

Table 5. Estimated marginal means and standard errors of technical skill performance metrics
during the realistic resection scenario.?

2 Only metrics analyzed using parametric statistical methods are included. Estimates are from the between-group
statistical analyses of these technical skill performance metrics.
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	Résumé
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