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OBJECTIVE: To determine whether personalized feed-

back from a human instructor receiving artificial intelli-

gence (AI) error data will result in reduced feedback

frequency and improvement of surgical skill compared

to AI instruction. As feedback was only provided follow-

ing AI error detection, a reduced feedback frequency is
associated with fewer errors in performance. We

hypothesized that AI-augmented personalized
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instruction would result in reduced feedback frequency

and improvement in technical skill.

DESIGN: This cross-sectional cohort study was a follow-

up of a randomized controlled trial, which utilized the

NeuroVR, an immersive virtual reality neurosurgical sim-

ulator. Participants were stratified by year in medical

school and block randomized to receive one of 3 educa-

tional interventions as they performed simulated proce-

dures on the NeuroVR: AI tutor instruction, scripted

human instruction, and AI-augmented personalized
instruction. Performance was assessed by the feedback

frequency and technical skill performance metrics. Clini

calTrials.gov ID: NCT06273579.

SETTING: Neurosurgical Simulation and Artificial Intelli-

gence Learning Centre, McGill University, Montreal,

Canada.

PARTICIPANTS: Volunteer sample of medical students
from 4 Quebec universities in preparatory, first, or sec-

ond year without prior use of the NeuroVR. Eighty-eight

students participated in the study with 87 included in

the final analysis; 1 was excluded due to technical issues.
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RESULTS: By the third repetition, the AI-augmented per-

sonalized instruction group received significantly fewer

total instructions (incidence rate ratio [IRR], 1.50 [95%

CI, 1.16-1.94] instructions; p< 0.001), and high aspira-
tor force instructions (IRR, 1.71 [95% CI, 1.15-2.55]

instructions; p = 0.002), compared to the second repeti-

tion. Compared to AI tutor instruction, AI-augmented

personalized instruction resulted in a significantly lower

rate of healthy tissue removal (p = 0.01), instrument tip

separation distance (mean ratio, 1.25 [95% CI, 1.05-1.50]

mm; p = 0.008), and aspirator force (mean ratio, 1.68

[95% CI, 1.23-2.31] N; p< 0.001). AI-augmented person-
alized instruction showed a significant improvement

from baseline in all subsequent repetitions for all perfor-

mance metrics.

CONCLUSIONS: This cohort study demonstrated that AI-

augmented personalized instruction resulted in less fre-

quent feedback, indicating fewer errors in trainee perfor-

mance, and an improvement in simulated surgical skills. ( J

Surg Ed 82:103743. � 2025 The Authors. Published by

Elsevier Inc. on behalf of Association of Program Directors

in Surgery. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/))
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INTRODUCTION

Mastery of surgical technical skill is essential to mitigate

the risk of surgical errors.1-5 The current pedagogical

model for surgical training involves the constant inter-

play between the educator and the trainee in a dynamic

operative environment.6 These real-time communica-

tions rely on the subjective observations of human
instructors for continuous assessment and immediate,

personalized, actionable feedback to guide technical skill
2 Journal
development and error mitigation.7 However, there may

be discrepancies between instructors’ interpretations of

proper surgical techniques, leading to difficulties com-

paring trainee skill level between multiple evaluators,
let alone multiple institutions.7 This reliance on sub-

jective, qualitative performance data highlights a lack

of objective, standardized instructional methodologies

and assessments of surgical trainee performance.7-10

Intelligent tutoring systems utilizing artificial intelli-

gence (AI) to provide personalized and adaptive

instructions to learners may help overcome these lim-

itations due to their capacity to process and analyze
large quantities of data to objectively assess perfor-

mance.11-16 These systems can quantify trainee perfor-

mance and detect subtle errors that a human

instructor may fail to notice and mitigate, such as a

high force application that can lead to healthy tissue

damage if left uncorrected.7

Intelligent tutoring systems have shown potential in

teaching trainees surgical techniques and evaluating
their competency using a data-driven approach in simu-

lation environments.11,12,17 A randomized controlled

trial (RCT) utilizing the Virtual Operative Assistant intelli-

gent tutoring system, employing only posthoc AI feed-

back, significantly improved simulated surgical

performance.12,15 This system lacks the capacity to con-

tinuously monitor intraoperative skills or provide real-

time feedback, posing a disadvantage to its application
in an operating room environment. The Intelligent Con-

tinuous Expertise Monitoring System (ICEMS) is a multi-

algorithm AI system specifically designed to address

these issues by employing quantitative data to continu-

ously assess trainee performance and provide continu-

ous, real-time instructions to mitigate and reduce trainee

errors based on real-time risk detection.16 Developed

using a long short-term memory network and based on
objective, AI-derived metrics, the ICEMS can be used to

detect errors in surgical performance.16 The ICEMS was

trained on neurosurgeons’ (experts) and medical

students’ (novices) operative data and demonstrated a

granular differentiation across levels of expertise, and

has shown face, content, construct, and predictive

validity.16,18 The NeuroVR, a high-fidelity virtual reality

(VR) surgical simulator equipped with haptic feedback
for brain tumor resection procedures, was used to

develop the ICEMS.19 The ICEMS can be applied to any

simulation system.16

An RCT demonstrated that the ICEMS improved simu-

lated surgical performance more than skilled instructors,

indicating the pedagogical utility of the system.11

Another crossover RCT found that trainee performance

was significantly improved when instructed by a skilled
educator first and then followed by ICEMS instruction.17

Although this intelligent tutoring system can provide
of Surgical Education � Volume 82/Number 11 � November 2025
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objective feedback, it is limited to delivering specific ver-

bal instructions, while human educators can provide

context and personalize their feedback. In a previous

cohort study, this limited variety of possible feedback
instructions led to unintended outcomes in an AI-

enhanced curriculum, which negatively impacted

trainee performance efficiency.20 The results of these

studies suggest that combining a skilled instructor and

an AI tutor would allow for the contextualization of AI

error data and optimize trainee performance. A recent

RCT found that AI-augmented personalized instruction

resulted in enhanced ICEMS scores on a simulated sub-
pial brain tumor practice resection scenario compared

to AI tutor instruction and scripted human instruction,

along with an improved transfer of surgical technical

skills to a realistic simulated scenario.21 These results

highlight that personalized expert instruction results in

enhanced surgical performance and skill transfer com-

pared with intelligent tutor instruction, emphasizing the

critical role of human engagement and contribution in
artificial intelligence-based surgical training.

However, this study did not investigate how AI-aug-

mented personalized expert instruction influenced the

frequency of feedback instructions, nor the differences

in trainee technical performance between groups. Our

study builds on this previous investigation,21 using a

cohort study design to evaluate these 2 components. We

hypothesized that participants receiving AI-augmented
personalized instruction would (1) receive a significantly

lower number of feedback instructions compared to

those receiving AI tutor instruction, and (2) show a sig-

nificantly better response to these instructions through

improvement in technical skill performance compared

to those receiving AI tutor instruction.
METHODS

Participants

We conducted a planned secondary analysis using retro-

spective data from a previous RCT involving 87 medical

students at the Neurosurgical Simulation and Artificial

Intelligence Learning Centre, McGill University, Montreal,

Canada from March to September 2024.21 Students were
recruited for a single 90-minute surgical simulation ses-

sion with no follow-up. Medical students enrolled in their

preparatory, first, or second year at one of 4 Quebec insti-

tutions were considered eligible for the study. The exclu-

sion criterion was previous experience with the

NeuroVR, the VR simulator used in this study. A sample

size calculation with a power of 0.9, an effect size of 0.3,

an a error probability of 0.05, and a correlation among
repeated measures of 0.5 resulted in a total of 87 partici-

pants, with 29 participants in each of 3 groups.
Journal of Surgical Education � Volume 82/Number 11 � November 20
Recruitment materials were distributed through student

groups, social media, and word of mouth. Each partici-

pant performed the same simulated procedure with a dif-

ferent instructional method. This study was approved by
the McGill University Health Centre Research Ethics

Board, Neurosciences-Psychiatry and was registered on

ClinicalTrials.gov on February 16, 2024 (NCT06273579).

All participants signed an approved informed consent

form prior to commencing the study. Participants did not

receive any benefits or compensation for their participa-

tion. This report follows the Strengthening the Reporting

of Observational Studies in Epidemiology (STROBE)22

guidelines for cohort studies and the Machine Learning to

Assess Surgical Expertise (MLASE) checklist.23

Study Procedure and Simulation Session

Following voluntary enrollment, students were stratified

according to year in medical school and block random-

ized to one of 3 intervention arms with a 1:1:1 allocation

ratio. All participants received standardized written and

verbal instructions outlining the use of the instruments,

the goal of the task, and how the session would proceed.

Students were not made aware of the trial’s purpose and
assessment metrics at any point. The study utilized the

NeuroVR (CAE Healthcare, Montreal, Canada), a high-

fidelity VR neurosurgical simulator, on which partici-

pants performed simulated subpial brain tumor resec-

tion procedures.19,24 The platform has previously

demonstrated face, content, and construct validity.24-26

The simulation tasks involved the use of an ultrasonic

aspirator and bipolar forceps, each equipped with haptic
feedback, to completely resect a simulated tumor while

minimizing bleeding and damage to nonpathological

tissue.25,27 All participants completed six 5-minute prac-

tice subpial resection scenarios to assess their learning

(Figure 1), followed by a 13-minute realistic scenario to

assess skill transfer to a more complex procedure

(Figure 2). Between each repetition, a rest period of 5

minutes was afforded to participants.28,29

Interventions

Participants performed their first practice resection sce-

nario without feedback to establish their baseline perfor-
mance level. The second to fifth repetitions of the

practice scenario served as a formative assessment, dur-

ing which participants received feedback only when an

error was identified by the ICEMS. Feedback methods

differed between the 3 groups. Participants then pro-

ceeded to perform a sixth repetition of the practice sce-

nario without feedback as a summative assessment of

their performance. Trainees then completed 1 repetition
of the realistic scenario to assess skill transfer to a more

complex scenario. The study procedure is outlined in
25 3



FIGURE 1. Practice subpial tumor resection scenario. (A) Start of the practice subpial tumor resection scenario. Yellow area represents the tumor and white
area represents healthy brain tissue. Instrument on the left is the bipolar forceps, and instrument on the right is the ultrasonic aspirator. (B) Participant lifts the pia
using the bipolar forceps to expose the underlying tumor, and the ultrasonic aspirator to resect the tumor. (C) Appearance following resection of the superficial
tumor. Deeper tumor areas shown by remaining yellow tissue. (D) Participant exposes deep cerebral vessel (red). (E) Participant uses the bipolar forceps to cau-
terize a bleeding point. (F) Complete resection of the tumor.
Figure 3. Participants and instructors were blinded to

group assignments and study outcomes.
The instructors were senior neurosurgical residents

with experience in clinical and simulated subpial resec-

tion procedures. A senior neurosurgical consultant with

extensive involvement in VR neurosurgical simulation

and clinical subpial operations identified these instruc-

tors as competent to train novices during these simu-

lated procedures.

Group 1: AI Tutor Instruction

Group 1 received real-time verbal feedback from the

ICEMS upon metric error detection.

Group 2: Scripted Human Instruction

Group 2 received instructions from one of 2 neurosurgi-

cal residents (M.A., postgraduate year [PGY] 5; A.K.A.,

PGY 4) upon metric error detection by the ICEMS.

Prompted by the ICEMS using colored indicators,
instructors provided real-time verbal feedback using the

same wording as the ICEMS (Table 1).
4 Journal
Group 3:AI-Augmented Personalized Instruction

Group 3 received instructions from a neurosurgical resi-
dent (A.A., PGY 4) upon metric error detection by the

ICEMS. Prompted by the ICEMS using colored indicators,

the instructor provided real-time personalized verbal

feedback in their own words based on the trainee’s

manipulations.

Instructions were provided based on preselected met-

rics: healthy tissue injury risk, bleeding risk, instrument

tip separation distance, bipolar forceps force, and ultra-
sonic aspirator force. The metrics followed a hierarchy,

as employed in previous studies; if more than 1 error

occurred simultaneously, instructions for the metric

higher in the hierarchy would be prioritized.11,16 The

feedback instructions provided in groups 1 and 2 and

the hierarchical order of these metrics are outlined in

Table 1.

Performance Metric Extraction

During the second to fifth repetitions, the ICEMS

recorded the number of instructions given for each
of Surgical Education � Volume 82/Number 11 � November 2025



FIGURE 2. Realistic subpial tumor resection scenario. (A) Start of the realistic subpial tumor resection scenario. Off-white area represents the tumor and pink
area represents healthy brain tissue. Instrument on the left is the bipolar forceps, and instrument on the right is the ultrasonic aspirator. (B) Participant lifts the pia
using the bipolar forceps to expose the underlying tumor, and the ultrasonic aspirator to resect the tumor. (C) Participant causes minor bleeding from the tumor
while using the ultrasonic aspirator. (D) Participant uses the bipolar forceps to cauterize a bleeding point. (E) Participant causes major bleeding from the
healthy tissue while using the ultrasonic aspirator. (F) Complete resection of the tumor.
ICEMS metric: healthy tissue injury risk, bleeding risk,

high instrument tip separation distance, high bipolar

force, low bipolar force, and high aspirator force.11,16

Following the completion of a repetition, the number of
FIGURE 3. Flow diagram. Eighty-eight students were randomly allocate

Journal of Surgical Education � Volume 82/Number 11 � November 20
instructions given to a participant in total and for each

metric was summed. The average number of instructions

was calculated for each group for each formative repeti-

tion of the practice scenario. During every repetition,
d into 3 intervention groups. Abbreviation: AI, artificial intelligence.

25 5



TABLE 1. Metrics Assessed by the ICEMS in Hierarchical Order, and Their Corresponding Instructions16,‡

Metric ICEMS Instruction

1. Healthy tissue injury risk “Try to avoid damaging the healthy brain surrounding the tumor.”
2. Bleeding risk “Careful control of bleeding will improve your performance.”
3. Instrument tip separation distance “Keeping your instruments closer together will improve your performance.”
4. High bipolar force application “Try to decrease the amount of force you are applying with your bipolar.”
5. Low bipolar force application “You can improve your performance by applying more force with your bipolar.”
6. High aspirator force application “Try to decrease the amount of force you are applying with your aspirator.”

Abbreviation: ICEMS, Intelligent Continuous Expertise Monitoring System.
‡The right column shows the instructions given to group 1 and 2 upon metric error detection by the ICEMS. If the ICEMS identifies more than one error simulta-
neously, it is programmed to provide instruction on the metric higher in the hierarchy.
the NeuroVR recorded participant technical skill perfor-

mance data in 20-millisecond increments (50 recordings

per second; t = 20ms), including rate of healthy tissue

removal (mm3/t), total volume of blood lost (mm3),

instrument tip separation distance in the 3D space

(mm), force applied with bipolar forceps (N), and force
applied with ultrasonic aspirator (N).30 These perfor-

mance metrics were selected based on their relation to

the feedback instructions given during the session to

assess their effectiveness. The raw data were collected,

and an average was calculated for 4 of the 5 technical

skill performance metrics for each participant in each

repetition. Only the final value of total blood volume lost

was utilized for each repetition, rather than taking an
average. AI tutor-automated feedback provision and data

visualization were performed using MATLAB (The Math-

Works Inc., Natick, Massachusetts, USA) release 2024b.

OutcomeMeasures

The first coprimary outcome of this study was the num-

ber of instructions that trainees received in total and for

each ICEMS metric during each of the formative practice

subpial resection scenarios. The second coprimary out-

come was trainee technical skill performance during the

practice scenarios and realistic scenario, measured using
the 5 performance metrics recorded by the NeuroVR.

Statistical Analysis

Between- and within-group comparisons of the mean
number of feedback instructions received over the sec-

ond to fifth repetitions of the practice resection scenario

were conducted using generalized linear mixed (GLMM)

Poisson regression models for count data. Model assump-

tions and the presence of possible outliers or influential

observations were investigated using graphical analyses

of simulated residuals. Posthoc pairwise comparisons

were adjusted using the �Sid�ak method for between-
group differences and the Bonferroni correction for

within-group differences. Results are reported as
6 Journal
incidence rate ratios (IRR) and 95% confidence intervals

(CI).

Between-group comparisons of the mean values of the

technical skill performance metrics at each repetition of

the practice resection scenario were conducted using a

two-way mixed model analysis of variance (ANOVA).
Repeated measures ANOVA was used to investigate

within-group differences of the mean values of the tech-

nical skill performance metrics at each repetition of the

practice resection scenario. One-way ANOVA was used

to compare the mean values of each technical skill per-

formance metric in the realistic resection scenario.

Assumption of errors of ANOVA models, including nor-

mality, homogeneity of variance, and the presence of
possible outliers or influential observations were

assessed by graphical examination of model residuals.

Posthoc pairwise comparisons of mean differences were

adjusted using the �Sid�ak method for between-group dif-

ferences and the Bonferroni correction for within-group

differences. When model residuals did not show evi-

dence of having a Normal (Gaussian) distribution, a natu-

ral logarithmic transformation of the values was used as
the model outcome to stabilize the variability. A robust

linear mixed model approach to the ANOVA was used

when the assumption of homogeneity of variance or

residuals was violated. In cases where the normality or

homogeneity of variance assumptions were drastically

violated, we used the Kruskal-Wallis test at each rep-

etition for between-group analysis, followed by

Dunn’s test with Bonferroni correction for multiple
comparisons, and the Friedman test was used for

within-group analysis, followed by the Nemenyi test.

Results are reported as estimated mean differences

and 95% CI and, in cases where a log transformation

was used, as estimated ratios of geometric means

and 95% CI.

Data analysis was performed using R Statistical Soft-

ware (v4.3.3; R Core Team 2024)31 from February to
May 2025. All codes were written by the authors.

ANOVAs and Poisson GLMM were implemented using
of Surgical Education � Volume 82/Number 11 � November 2025



TABLE 2. Demographic Characteristics of Included Study Participants

Group 1 Group 2 Group 3 All Participants
AI tutor
instruction
(n=30)

Scripted human
instruction
(n=29)

AI-augmented
personalized
instruction
(n=28)

(n=87)

Age, mean § SD (range) 21.8§ 2.4 (18-27) 22.6§ 4.4 (18-38) 23.9§ 4.8 (19-37) 22.7§ 2.4 (18-38)
Sex
Female 18 16 12 46
Male 12 13 15 40
Prefer not to say 0 0 1 1

Gender
Woman 18 16 12 46
Man 12 13 15 40
Prefer not to say 0 0 1 1

Undergraduate medical
training level
Preparatory 9 8 8 25
First 15 14 13 42
Second 6 7 7 20

Institution
McGill University 11 15 14 40
Universit�e de Montr�eal 12 7 6 25
Universit�e de Sherbrooke 4 6 7 17
Universit�e Laval 3 1 1 5

Handedness
Right 28 25 24 77
Left 2 3 4 9
Ambidextrous 0 1 0 1

Interest in pursuing surgery,
mean (range)z

4 (2-5) 4.1 (2-5) 3.9 (2-5) 4 (2-5)

Completed surgical rotation/
clerkship/shadowing
Yes 12 10 11 33
No 18 19 17 54

Plays video games
Yes 8 9 13 30
No 22 20 15 57

Playedmusical instruments
in last 5 years
Yes 9 9 13 31
No 21 20 15 56

Participated in activities that
require hand dexterity
Yes 8 12 11 31
No 22 17 17 56

Previously used VR surgical
simulation
Yes 1 2 5 8
No 29 27 23 79

Abbreviations: AI, artificial intelligence; VR, virtual reality.
‡Rated on a 5-point Likert scale, with 1 indicating less interest and 5 indicating more interest.
the lme4
32 and glmmTMB

33 R packages, respectively.

The GLMM analysis of simulated residuals was imple-
mented using the DHARMa R package.34 The robust lin-

ear mixed model approach to ANOVA was done using

the robustlmm R package.35
Journal of Surgical Education � Volume 82/Number 11 � November 20
RESULTS

Eighty-eight medical students from 4 Quebec universities
participated in the study. Participants were stratified

according to year in medical school and block
25 7



randomized to one of 3 groups. There were 31 students

in the AI tutor instruction group (group 1), 29 in the

scripted human instruction group (group 2), and 28 in

the AI-augmented personalized instruction group
(group 3). Due to technical issues that arose during the

simulation session, data from 1 participant in group

1 were excluded from the analysis. Data from 87 partici-

pants (46 [53%] women, 40 [46%] men, 1 [1%] unspeci-

fied; mean [SD] age, 22.7 [4.0] years) were available for

analysis, including 522 practice scenarios and 87 realistic

scenarios (Table 2).

Feedback Frequency Across Simulated Practice
Subpial Resections

All groups began receiving instructions in the second

repetition of the practice scenario. In total, over the sec-

ond to fifth repetitions, group 1 received 1464 instruc-

tions, group 2 received 1183 instructions, and group 3

received 728 instructions. Figure 4 outlines the number

of instructions received by the groups for each metric in

each repetition of the practice scenario where feedback
FIGURE 4. Number of instructions that each group received for each ICEMS me
color coded (see legend). X-axis represents the repetition number. Colored stacked
were given upon metric error detection by the ICEMS. Total number of instruction
Intelligent Continuous Expertise Monitoring System.

8 Journal
was given (repetitions 2 to 5). The incidence rates of

instructions for each metric can be found in Table 3.

Group 1 received significantly more instructions in total

compared to group 3 by the second repetition (IRR, 1.52
[95% CI, 1.03-2.23] instructions; p = 0.03). Group 2

received significantly more feedback instructions in total

compared to group 3 by the third repetition of the prac-

tice scenario (IRR, 1.74 [95% CI, 1.15-2.63] instructions;

p = 0.001) (Fig. 5A). Pertaining to bleeding risk instruc-

tions, group 1 received significantly more feedback com-

pared to group 3 in the second (IRR, 5.55 [95% CI, 1.22-

25.15] instructions; p = 0.01), fourth (IRR, 5.02 [95% CI,
1.09-23.19] instructions; p = 0.03), and fifth (IRR, 8.20

[95% CI, 1.73-38.77] instructions; p = 0.001) repetitions,

and group 2 received significantly more feedback than

group 3 in the second (IRR, 4.89 [95% CI, 1.06-22.53]

instructions; p = 0.04) and fifth (IRR, 6.81 [95% CI, 1.41-

32.80] instructions; p = 0.006) repetitions (Fig. 5C).

Group 1 received significantly more instructions relating

to high bipolar force than group 3 in the fourth
repetition of the practice scenario (IRR, 2.13 [95% CI,
tric across the second to fifth repetitions of the practice scenario. Metrics are
bars represent the number of instructions for each ICEMS metric. Instructions
s are indicated in bold above each bar. AI, artificial intelligence; ICEMS,

of Surgical Education � Volume 82/Number 11 � November 2025



TABLE 3. Incidence Rates and Standard Errors of Instructions for 6 ICEMS Metrics Received During the Second to Fifth Repetitions of the
Practice Resection Scenario‡

Group Incidence Rate (IR) [SE]

Healthy
Tissue Injury
Risk

Bleeding
Risk

Instrument
Tip
Separation
Distance

High Bipolar
Force

Low Bipolar
Force

High
Aspirator
Force

All Metrics
Combined

Repetition 2
1 0.15 [0.07] 0.88 [0.28] 1.03 [0.22] 3.24 [0.50] 0.59 [0.15] 3.84 [0.47] 12.81 [1.18]
2 0.07 [0.04] 0.78 [0.26] 0.79 [0.19] 2.26 [0.38] 1.00 [0.22] 3.94 [0.49] 10.24 [0.96]
3 0.11 [0.07] 0.16 [0.07] 0.83 [0.20] 1.68 [0.31] 0.65 [0.16] 3.92 [0.50] 8.45 [0.84]
Repetition 3
1 0.16 [0.08] 0.85 [0.27] 1.00 [0.22] 2.24 [0.37] 0.80 [0.18] 3.84 [0.47] 11.63 [1.09]
2 0.07 [0.04] 0.84 [0.28] 0.68 [0.17] 2.20 [0.37] 0.81 [0.19] 3.81 [0.48] 9.83 [0.93]
3 0.008 [0.009] 0.20 [0.08] 0.48 [0.14] 1.45 [0.28] 0.44 [0.13] 2.29 [0.34] 5.65 [0.61]
Repetition 4
1 0.093 [0.05] 0.75 [0.24] 1.00 [0.22] 2.64 [0.42] 1.12 [0.23] 3.32 [0.42] 11.56 [1.08]
2 0.091 [0.05] 0.67 [0.23] 0.71 [0.18] 1.87 [0.33] 1.14 [0.24] 3.55 [0.45] 9.38 [0.90]
3 1.24E -11

[3.17E-7]
0.15 [0.07] 0.38 [0.12] 1.24 [0.25] 0.77 [0.18] 1.67 [0.28] 4.84 [0.55]

Repetition 5
1 0.14 [0.07] 0.99 [0.32] 0.95 [0.21] 2.64 [0.42] 0.85 [0.19] 4.14 [0.50] 12.58 [1.16]
2 0.050 [0.03] 0.83 [0.27] 0.58 [0.15] 1.76 [0.31] 0.67 [0.16] 3.17 [0.42] 8.30 [0.81]
3 0.033 [0.02] 0.12 [0.06] 0.35 [0.11] 1.30 [0.26] 0.44 [0.13] 1.67 [0.28] 4.55 [0.52]

Abbreviation: ICEMS, Intelligent Continuous Expertise Monitoring System.
‡Estimates are from the between-group statistical analyses of these ICEMS metrics.
1.03-4.39] instructions; p = 0.04) (Fig. 5E). By the fourth

repetition of the practice scenario, groups 1 and 2 both

received significantly more high aspirator force feedback

instructions than group 3 (IRR, 1.99 [95% CI, 1.10-3.61]

instructions; p = 0.01; and IRR, 2.13 [95% CI, 1.17-3.87]

instructions; p = 0.004, respectively) (Fig. 5G). Only

group 3 received significantly fewer instructions across
repetitions of the practice scenario. By the third repeti-

tion, this group received significantly fewer total instruc-

tions (IRR, 1.50 [95% CI, 1.16-1.94] instructions;

p< 0.001) and instructions relating to aspirator force

(IRR, 1.71 [95% CI, 1.15-2.55] instructions; p = 0.002)

compared with the second repetition (Figs. 5A and G).
Technical Skill Performance Across Simulated
Practice Subpial Resections

Learning curves were assessed for the 5 technical skill

performance metrics. The estimates for each metric ana-

lyzed using parametric statistical methods can be found

in Table 4. No statistically significant differences were

observed between the groups at baseline performance

(first repetition) in all 5 performance metrics. Dunn’s

tests with Bonferroni correction indicated that group 3
demonstrated a significantly lower rate of healthy tissue

removal compared to group 1 by the third (p = 0.01)
Journal of Surgical Education � Volume 82/Number 11 � November 20
repetition of the practice scenario, and that group 3 had

significantly less bleeding than group 1 in the second

(p = 0.02) and fourth (p = 0.02) repetitions of the prac-

tice scenario (Figure 6A and B). In addition, a pairwise

test with �Sid�ak adjustment indicated that group 3 dem-

onstrated a significantly lower instrument tip separation

distance by the second repetition of the practice sce-
nario compared with group 1 (mean ratio, 1.25 [95% CI,

1.05-1.50] mm; p = 0.008) and compared with group 2

in the third (mean ratio, 1.20 [95% CI, 1.00-1.44] mm;

p = 0.049) and fourth (mean ratio, 1.22 [95% CI, 1.02-

1.46] mm; p = 0.03) repetitions of the practice scenario.

This same statistical test found that group 2 had a signifi-

cantly lower instrument tip separation distance than

group 1 during the fifth repetition (mean ratio, 1.33
[95% CI, 1.11-1.59] mm; p< 0.001; Fig. 6C). No other

statistically significant differences were observed

between group 1 and 2 in the other performance met-

rics. A pairwise test with �Sid�ak adjustment also indicated

that, by the third repetition, group 3 used significantly

less force with the ultrasonic aspirator than group 1

(mean ratio, 1.68 [95% CI, 1.23-2.31] N; p< 0.001) and

group 2 (mean ratio, 1.50 [95% CI, 1.09-2.06] N;
p = 0.007; Fig. 6E). No statistically significant differences

were found between the groups in the force applied

using the bipolar forceps (p> 0.05), as indicated by a
25 9



FIGURE 5. The mean total number of instructions and mean number of instructions in each ICEMS performance metric across the second to fifth repetitions of
the practice scenario. Groups are color coded (see legend). The X-axis represents the repetition number. Points represent group means and error bars represent
standard errors. Black horizontal brackets indicate statistically significant differences between groups (p< 0.05) during a given repetition. Asterisks indicate
statistically significant differences from the baseline (p< 0.05) for that group. AI, artificial intelligence; ICEMS, Intelligent Continuous Expertise Monitoring
System.
robust linear mixed model regression (Fig. 6D). Com-

pared to baseline performance, by the second repetition
of the practice scenario, group 1 significantly decreased

the distance between their instruments (mean differ-

ence, 2.28 [95% CI, 0.57-3.99] mm; p = 0.001). This find-

ing was also observed for group 2 (mean difference,

3.47 [95% CI, 2.30-4.64] mm; p< 0.001) and group 3

(mean ratio, 1.55 [95% CI, 1.36-1.77] mm; p< 0.001;

Fig. 6C), as indicated by a pairwise test with Bonferroni

adjustment. This same test found that, compared to base-
line performance, groups 1, 2, and 3 significantly low-

ered the force applied with the bipolar forceps (mean

difference, 0.08 [95% CI, 0.02-0.13] N; p< 0.001; mean
10 Journal
difference, 0.13 [95% CI, 0.07-0.18] N; p< 0.001; and

mean ratio, 1.38 [95% CI, 1.13-1.67] N; p< 0.001,
respectively) by the second repetition (Fig. 6D). Neme-

nyi test showed that group 3 also achieved a significantly

lower rate of healthy tissue removal (p< 0.001) and vol-

ume of blood lost (p< 0.001) by the second repetition

compared to baseline, and a pairwise test with Bonfer-

roni correction found that this group demonstrated a

lower force applied with the ultrasonic aspirator (mean

difference, 0.05 [95% CI, 0.02-0.07] N; p< 0.001) by the
second repetition compared to baseline (Figs. 6A, B and

E). Other improvements from baseline performance and

between specific trials are shown in Figure 6.
of Surgical Education � Volume 82/Number 11 � November 2025



TABLE 4. Estimated Geometric Means and Standard Errors of Technical Skill Performance Metrics Over 6 Repetitions of the Practice Resec-
tion Scenario‡

Group Estimated Geometric Mean (EGM) [SE]

Instrument Tip Separation
Distance (mm)

Force AppliedWith Bipolar
Forceps (N)

Force AppliedWith Ultrasonic
Aspirator (N)

Repetition 1
1 11.79 [0.61] 0.43 [0.02]x 0.16 [0.01]
2 11.84 [0.63] 0.43 [0.02]x 0.15 [0.01]
3 11.76 [0.63] 0.44 [0.02]x 0.16 [0.01]
Repetition 2
1 9.52 [0.50] 0.36 [0.02]x 0.13 [0.01]
2 8.33 [0.44] 0.30 [0.02]x 0.11 [0.01]
3 7.59 [0.41] 0.32 [0.02]x 0.11 [0.01]
Repetition 3
1 8.84 [0.46] 0.33 [0.02]x 0.13 [0.01]
2 8.20 [0.43] 0.31 [0.02]x 0.12 [0.01]
3 6.84 [0.37] 0.27 [0.02]x 0.08 [0.01]
Repetition 4
1 8.78 [0.46] 0.33 [0.02]x 0.13 [0.01]
2 7.69 [0.41] 0.29 [0.02]x 0.11 [0.01]
3 6.32 [0.34] 0.26 [0.02]x 0.07 [0.01]
Repetition 5
1 9.87 [0.51] 0.36 [0.02]x 0.14 [0.01]
2 7.42 [0.39] 0.28 [0.02]x 0.11[0.01]
3 6.62 [0.36] 0.27 [0.02]x 0.07 [0.01]
Repetition 6
1 9.82 [0.51] 0.37 [0.02]x 0.14 [0.01]
2 8.32 [0.44] 0.30 [0.02]x 0.12 [0.01]
3 7.10 [0.38] 0.28 [0.02]x 0.08 [0.01]
‡Only metrics analyzed using parametric statistical methods are included. Estimates are from the between-group statistical analyses of these technical skill
performance metrics.
§Estimated marginal mean (EMM) [SE].
Technical Skill Transfer to the Simulated
Realistic Subpial Resection

The estimates for each metric analyzed using parametric

statistical methods can be found in Table 5. Following

the completion of the realistic scenario, a pairwise test

with �Sid�ak adjustment indicated that group 3 applied sig-

nificantly less force with the ultrasonic aspirator than
group 1 (mean difference, 0.04 [95% CI, 0.01-0.07] N;

p = 0.01) (Figure 7E). No other statistically significant dif-

ferences were found between the groups.
DISCUSSION

To the authors’ knowledge, this cohort study is the first

investigation to demonstrate the pedagogical impact of

AI-augmented personalized instruction on the frequency

of feedback instructions and on the results of these spe-

cific surgical instructions on trainee surgical perfor-
mance. A previous RCT used ICEMS scores to explore

the effect of the 3 different instructional methods
Journal of Surgical Education � Volume 82/Number 11 � November 20
utilized in this investigation on trainee skill acquisition

and skill transfer.21 This study builds on this investiga-

tion, focusing on the frequency of instructions provided
and their impact on changes in technical skill.

Consistent with our first hypothesis, participants

receiving AI-augmented personalized instruction

received fewer total instructions compared with AI

tutor and scripted human instruction. Since feedback

was only provided when the ICEMS detected an

error, a reduced feedback frequency can be associ-

ated with trainees making fewer performance errors.
Thus, fewer feedback instructions suggests that AI-

augmented instructions may be more comprehensible

and provide more clarity to trainees to understand

how to correct errors in their performance. In the

second repetition, when trainees first began receiving

feedback, the AI-augmented personalized instruction

group received significantly fewer instructions com-

pared to those trained by the AI tutor, providing evi-
dence for this methodology’s immediate efficacy for

teaching trainees how to correct errors. This trainee

group was the only 1 to receive significantly fewer
25 11



FIGURE 6. The learning curves of 5 technical skill performance metrics across 6 repetitions of the practice scenario. Groups are color coded (see legend).
The X-axis represents the repetition number. Points represent group means and error bars represent standard errors. Since the simulator records the metrics at a
frequency of 50 Hz, the unit of time (t) is equal to 20 ms. Black horizontal brackets indicate statistically significant differences between groups (p< 0.05)
during a given repetition. Within-group differences are represented by horizontal brackets in the respective color for that group (p< 0.05). AI, artificial
intelligence.
total instructions throughout the session. This finding

is consistent with the concept that personalized
instructions provided sufficient context to be action-

able in real time, as this group consistently had fewer

errors in performance.
12 Journal
The AI-augmented personalized instruction group had

significantly lower values compared to the AI tutor
instruction group for both risk metrics assessed and two

of the 3 coaching metrics, consistent with our second

hypothesis. Except for instructions pertaining to bipolar
of Surgical Education � Volume 82/Number 11 � November 2025



TABLE 5. Estimated Marginal Means and Standard Errors of Technical Skill Performance Metrics During the Realistic Resection Scenario‡

Group Estimated Marginal Mean (EMM) [SE]

Instrument Tip Separation
Distance (mm)

Force AppliedWith Bipolar
Forceps (N)

Force AppliedWith Ultrasonic
Aspirator (N)

1 15.51 [1.28] 0.40 [0.02] 0.12 [0.01]
2 13.92 [1.30] 0.34 [0.02] 0.11 [0.01]
3 12.16 [1.32] 0.34 [0.02] 0.08 [0.01]
‡Only metrics analyzed using parametric statistical methods are included. Estimates are from the between-group statistical analyses of these technical skill
performance metrics.
force, all the instructions given directed participants to

decrease the technical skill performance metric values

(Table 1). Thus, achieving lower values in these metrics

suggests a better understanding of the feedback instruc-

tions. The absence of significant differences in the bipo-

lar force applied may be attributable to participants

receiving 2 instructions for this metric � 1 to increase
and another to decrease the force applied with the bipo-

lar forceps throughout the session. This may have

allowed participants in all groups to learn the ideal

amount of force application with this instrument.

Employing a similar methodology for teaching the other

metrics, where trainees are made aware of appropriate

changes to performance as much as they are made aware

of errors, has proven beneficial for surgical skill acquisi-
tion and may be an avenue to explore in future studies

involving the ICEMS.36

The scripted human instruction group did not consis-

tently receive fewer instructions or exhibit significantly

better technical skill performance compared with the AI

tutor instruction group. These groups received instruc-

tions using identical wording (Table 1), suggesting that

the instructions programmed into the ICEMS may not
provide sufficient information to allow trainees to learn

to consistently correct errors. This is further supported

by the AI-augmented personalized instruction group’s

fewer instructions received and outperformance of both

other groups in several metrics. Investigations into the

instructions that elicited the most appropriate changes

in performance are presently being conducted using a

series of Large Language Models (LLMs) to further opti-
mize both the ICEMS and human expert instructions to

enhance performance outcomes.37

The results indicate that correcting performance relat-

ing to a high amount of force applied with the ultrasonic

aspirator may be most effectively accomplished with AI-

augmented instructions. This group received fewer

instructions for this metric and outperformed both other

groups during the summative assessment in repetition 6,
and group 1 during the realistic scenario by using signifi-

cantly less force. Studies focused on exploring the utility
Journal of Surgical Education � Volume 82/Number 11 � November 20
of LLMs to understand the reasons for the success of AI-

augmented personalized instructions for this particular

metric may further enhance the actionable vocabulary of

the ICEMS.

These findings have supported the hypothesis that

providing skilled instructors with AI-generated error

data to facilitate the provision of personalized, contin-
uous, contextualized feedback improves learning in a

simulated surgical environment. Further research is

required to determine whether these findings can be

generalized to more realistic surgical settings, and

such studies using an ex vivo animal model are cur-

rently underway.38-41 This cohort study demonstrates

the potential for AI-augmented personalized instruc-

tion to optimize trainee assessment, teaching, and
error mitigation in the operating room environment,

helping to lay the foundations for the development of

future intelligent human operating rooms powered by

AI technology.
LIMITATIONS

Intelligent tutoring systems cannot completely replicate

the communication interchange between a surgical edu-

cator and a learner in complex human operating set-

tings.42 This study was carried out using a small sample

of medical students in their preparatory, first, or second

year, and findings cannot be generalized to senior medi-
cal students or surgical residents. However, the results

of a series of simulation studies has demonstrated that

using medical students with minimal surgical experience

has provided valuable insights.11,12,17,20 Investigations

using neurosurgical residents, fellows, and neurosur-

geons are in preparation involving ex vivo models, but

the limited number of participants available may limit

the ability of these studies to achieve sufficient power to
detect statistically significant differences unless multiple

teaching centers are involved.
25 13



FIGURE 7. Five technical skill performance metrics during the realistic scenario. Groups are color coded (see legend). The X-axis represents the group. Col-
ored bars represent group means and error bars represent standard errors. Since the simulator records the metrics at a frequency of 50 Hz, the unit of time (t) is
equal to 20 ms. Black horizontal brackets indicate statistically significant differences between groups (p< 0.05). AI, artificial intelligence.
CONCLUSION

This cross-sectional cohort study demonstrated that arti-

ficial intelligence-augmented personalized instruction
resulted in less frequent feedback and improved surgical

technical skills.
14 Journal
These results continue to outline the importance of

human educator engagement and the critical role

they play in developing intelligent tutoring systems

for surgical education applicable to the human oper-
ating room.
of Surgical Education � Volume 82/Number 11 � November 2025
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