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OBJECTIVE: To determine whether personalized feed-
back from a human instructor receiving artificial intelli-
gence (AD error data will result in reduced feedback
frequency and improvement of surgical skill compared
to Al instruction. As feedback was only provided follow-
ing Al error detection, a reduced feedback frequency is
associated with fewer errors in performance. We
hypothesized that Al-augmented personalized
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instruction would result in reduced feedback frequency
and improvement in technical skill.

DESIGN: This cross-sectional cohort study was a follow-
up of a randomized controlled trial, which utilized the
NeuroVR, an immersive virtual reality neurosurgical sim-
ulator. Participants were stratified by year in medical
school and block randomized to receive one of 3 educa-
tional interventions as they performed simulated proce-
dures on the NeuroVR: Al tutor instruction, scripted
human instruction, and Al-augmented personalized
instruction. Performance was assessed by the feedback
frequency and technical skill performance metrics. Clini
calTrials.gov ID: NCT06273579.

SETTING: Neurosurgical Simulation and Artificial Intelli-
gence Learning Centre, McGill University, Montreal,
Canada.

PARTICIPANTS: Volunteer sample of medical students
from 4 Quebec universities in preparatory, first, or sec-
ond year without prior use of the NeuroVR. Eighty-eight
students participated in the study with 87 included in
the final analysis; 1 was excluded due to technical issues.
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RESULTS: By the third repetition, the Al-augmented per-
sonalized instruction group received significantly fewer
total instructions (incidence rate ratio [IRR], 1.50 [95%
CI, 1.16-1.94] instructions; p < 0.001), and high aspira-
tor force instructions (IRR, 1.71 [95% CI, 1.15-2.55]
instructions; p = 0.002), compared to the second repeti-
tion. Compared to Al tutor instruction, Al-augmented
personalized instruction resulted in a significantly lower
rate of healthy tissue removal (p =0.01), instrument tip
separation distance (mean ratio, 1.25 [95% CI, 1.05-1.50]
mm; p=0.008), and aspirator force (mean ratio, 1.68
[95% CI, 1.23-2.31] N; p < 0.001). Al-augmented person-
alized instruction showed a significant improvement
from baseline in all subsequent repetitions for all perfor-
mance metrics.

CONCLUSIONS: This cohort study demonstrated that Al-
augmented personalized instruction resulted in less fre-
quent feedback, indicating fewer errors in trainee perfor-
mance, and an improvement in simulated surgical skills. (J
Surg Ed 82:103743. © 2025 The Authors. Published by
Elsevier Inc. on behalf of Association of Program Directors
in Surgery. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/))
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INTRODUCTION

Mastery of surgical technical skill is essential to mitigate
the risk of surgical errors."” The current pedagogical
model for surgical training involves the constant inter-
play between the educator and the trainee in a dynamic
operative environment.® These realtime communica-
tions rely on the subjective observations of human
instructors for continuous assessment and immediate,
personalized, actionable feedback to guide technical skill

development and error mitigation.” However, there may
be discrepancies between instructors’ interpretations of
proper surgical techniques, leading to difficulties com-
paring trainee skill level between multiple evaluators,
let alone multiple institutions.” This reliance on sub-
jective, qualitative performance data highlights a lack
of objective, standardized instructional methodologies
and assessments of surgical trainee performance.” '’
Intelligent tutoring systems utilizing artificial intelli-
gence (AD to provide personalized and adaptive
instructions to learners may help overcome these lim-
itations due to their capacity to process and analyze
large quantities of data to objectively assess perfor-
mance.'"'® These systems can quantify trainee perfor-
mance and detect subtle errors that a human
instructor may fail to notice and mitigate, such as a
high force application that can lead to healthy tissue
damage if left uncorrected.’

Intelligent tutoring systems have shown potential in
teaching trainees surgical techniques and evaluating
their competency using a data-driven approach in simu-
lation environments.'"'>'” A randomized controlled
trial (RCT) utilizing the Virtual Operative Assistant intelli-
gent tutoring system, employing only posthoc Al feed-
back, significantly improved simulated surgical
performance.'*'” This system lacks the capacity to con-
tinuously monitor intraoperative skills or provide real-
time feedback, posing a disadvantage to its application
in an operating room environment. The Intelligent Con-
tinuous Expertise Monitoring System (ICEMS) is a multi-
algorithm Al system specifically designed to address
these issues by employing quantitative data to continu-
ously assess trainee performance and provide continu-
ous, real-time instructions to mitigate and reduce trainee
errors based on real-time risk detection.'® Developed
using a long short-term memory network and based on
objective, Al-derived metrics, the ICEMS can be used to
detect errors in surgical performance.'® The ICEMS was
trained on neurosurgeons’ (experts) and medical
students’ (novices) operative data and demonstrated a
granular differentiation across levels of expertise, and
has shown face, content, construct, and predictive
validity.'>'® The NeuroVR, a high-fidelity virtual reality
(VR) surgical simulator equipped with haptic feedback
for brain tumor resection procedures, was used to
develop the ICEMS.'” The ICEMS can be applied to any
simulation system.'®

An RCT demonstrated that the ICEMS improved simu-
lated surgical performance more than skilled instructors,
indicating the pedagogical utility of the system.''
Another crossover RCT found that trainee performance
was significantly improved when instructed by a skilled
educator first and then followed by ICEMS instruction.'”
Although this intelligent tutoring system can provide
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objective feedback, it is limited to delivering specific ver-
bal instructions, while human educators can provide
context and personalize their feedback. In a previous
cohort study, this limited variety of possible feedback
instructions led to unintended outcomes in an Al-
enhanced curriculum, which negatively impacted
trainee performance efficiency.”’ The results of these
studies suggest that combining a skilled instructor and
an Al tutor would allow for the contextualization of Al
error data and optimize trainee performance. A recent
RCT found that Al-augmented personalized instruction
resulted in enhanced ICEMS scores on a simulated sub-
pial brain tumor practice resection scenario compared
to Al tutor instruction and scripted human instruction,
along with an improved transfer of surgical technical
skills to a realistic simulated scenario.”’ These results
highlight that personalized expert instruction results in
enhanced surgical performance and skill transfer com-
pared with intelligent tutor instruction, emphasizing the
critical role of human engagement and contribution in
artificial intelligence-based surgical training.

However, this study did not investigate how Al-aug-
mented personalized expert instruction influenced the
frequency of feedback instructions, nor the differences
in trainee technical performance between groups. Our
study builds on this previous investigation,”' using a
cohort study design to evaluate these 2 components. We
hypothesized that participants receiving Al-augmented
personalized instruction would (1) receive a significantly
lower number of feedback instructions compared to
those receiving Al tutor instruction, and (2) show a sig-
nificantly better response to these instructions through
improvement in technical skill performance compared
to those receiving Al tutor instruction.

METHODS

Participants

We conducted a planned secondary analysis using retro-
spective data from a previous RCT involving 87 medical
students at the Neurosurgical Simulation and Artificial
Intelligence Learning Centre, McGill University, Montreal,
Canada from March to September 2024.”' Students were
recruited for a single 90-minute surgical simulation ses-
sion with no follow-up. Medical students enrolled in their
preparatory, first, or second year at one of 4 Quebec insti-
tutions were considered eligible for the study. The exclu-
sion criterion was previous experience with the
NeuroVR, the VR simulator used in this study. A sample
size calculation with a power of 0.9, an effect size of 0.3,
an « error probability of 0.05, and a correlation among
repeated measures of 0.5 resulted in a total of 87 partici-
pants, with 29 participants in each of 3 groups.

Recruitment materials were distributed through student
groups, social media, and word of mouth. Each partici-
pant performed the same simulated procedure with a dif-
ferent instructional method. This study was approved by
the McGill University Health Centre Research Ethics
Board, Neurosciences-Psychiatry and was registered on
ClinicalTrials.gov on February 16, 2024 (NCT06273579).
All participants signed an approved informed consent
form prior to commencing the study. Participants did not
receive any benefits or compensation for their participa-
tion. This report follows the Strengthening the Reporting
of Observational Studies in Epidemiology (STROBE)*
guidelines for cohort studies and the Machine Learning to
Assess Surgical Expertise (MLASE) checklist.>’

Study Procedure and Simulation Session

Following voluntary enrollment, students were stratified
according to year in medical school and block random-
ized to one of 3 intervention arms with a 1:1:1 allocation
ratio. All participants received standardized written and
verbal instructions outlining the use of the instruments,
the goal of the task, and how the session would proceed.
Students were not made aware of the trial’s purpose and
assessment metrics at any point. The study utilized the
NeuroVR (CAE Healthcare, Montreal, Canada), a high-
fidelity VR neurosurgical simulator, on which partici-
pants performed simulated subpial brain tumor resec-
tion procedures.'”?* The platform has previously
demonstrated face, content, and construct validity.>**°
The simulation tasks involved the use of an ultrasonic
aspirator and bipolar forceps, each equipped with haptic
feedback, to completely resect a simulated tumor while
minimizing bleeding and damage to nonpathological
tissue.”>*’ All participants completed six 5-minute prac-
tice subpial resection scenarios to assess their learning
(Figure 1), followed by a 13-minute realistic scenario to
assess skill transfer to a more complex procedure
(Figure 2). Between each repetition, a rest period of 5
minutes was afforded to participants.”>*?

Interventions

Participants performed their first practice resection sce-
nario without feedback to establish their baseline perfor-
mance level. The second to fifth repetitions of the
practice scenario served as a formative assessment, dur-
ing which participants received feedback only when an
error was identified by the ICEMS. Feedback methods
differed between the 3 groups. Participants then pro-
ceeded to perform a sixth repetition of the practice sce-
nario without feedback as a summative assessment of
their performance. Trainees then completed 1 repetition
of the realistic scenario to assess skill transfer to a more
complex scenario. The study procedure is outlined in
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FIGURE 1. Practice subpial fumor resection scenario. (A) Start of the practice subpial tumor resection scenario. Yellow area represents the tumor and white
area represents healthy brain tissue. Instrument on the left is the bipolar forceps, and instrument on the right is the ulirasonic aspirator. (B) Participant lifts the pia
using the bipolar forceps to expose the underlying tumor, and the ulirasonic aspirator fo resect the tumor. (C) Appearance following resection of the superficial
tumor. Deeper tumor areas shown by remaining yellow tissue. (D) Participant exposes deep cerebral vessel (red). (E) Participant uses the bipolar forceps to cau-

terize a bleeding point. (F) Complete resection of the tumor.

Figure 3. Participants and instructors were blinded to
group assignments and study outcomes.

The instructors were senior neurosurgical residents
with experience in clinical and simulated subpial resec-
tion procedures. A senior neurosurgical consultant with
extensive involvement in VR neurosurgical simulation
and clinical subpial operations identified these instruc-
tors as competent to train novices during these simu-
lated procedures.

Group 1: Al Tutor Instruction
Group 1 received real-time verbal feedback from the
ICEMS upon metric error detection.

Group 2: Scripted Human Instruction

Group 2 received instructions from one of 2 neurosurgi-
cal residents (M.A., postgraduate year [PGY] 5; A KA.,
PGY 4) upon metric error detection by the ICEMS.
Prompted by the ICEMS using colored indicators,
instructors provided real-time verbal feedback using the
same wording as the ICEMS (Table 1).

Group 3:AIFAugmented Personalized Instruction

Group 3 received instructions from a neurosurgical resi-
dent (A.A., PGY 4) upon metric error detection by the
ICEMS. Prompted by the ICEMS using colored indicators,
the instructor provided real-time personalized verbal
feedback in their own words based on the trainee’s
manipulations.

Instructions were provided based on preselected met-
rics: healthy tissue injury risk, bleeding risk, instrument
tip separation distance, bipolar forceps force, and ultra-
sonic aspirator force. The metrics followed a hierarchy,
as employed in previous studies; if more than 1 error
occurred simultaneously, instructions for the metric
higher in the hierarchy would be prioritized.'"'® The
feedback instructions provided in groups 1 and 2 and
the hierarchical order of these metrics are outlined in
Table 1.

Performance Metric Extraction

During the second to fifth repetitions, the ICEMS
recorded the number of instructions given for each
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FIGURE 2. Redlistic subpial tumor resection scenario. (A) Start of the realistic subpial tumor resection scenario. Off-white area represents the tumor and pink
area represents healthy brain tissue. Instrument on the left is the bipolar forceps, and instrument on the right is the ulirasonic aspirator. (B) Participant lifts the pia
using the bipolar forceps o expose the underlying tumor, and the ultrasonic aspirator to resect the tumor. (C) Participant causes minor bleeding from the tumor
while using the ulirasonic aspirator. (D) Participant uses the bipolar forceps to cauterize a bleeding point. (E) Participant causes major bleeding from the
healthy tissue while using the ultrasonic aspirafor. (F] Complete resection of the tumor.

ICEMS metric: healthy tissue injury risk, bleeding risk, instructions given to a participant in total and for each
high instrument tip separation distance, high bipolar metric was summed. The average number of instructions
force, low bipolar force, and high aspirator force.'+1¢ was calculated for each group for each formative repeti-
Following the completion of a repetition, the number of tion of the practice scenario. During every repetition,

Practice Scenario
Intervention
Practice Practice Realistic
— scenario scenario — scenario
Medical
Baseline Summative Skill transfer
Students —
assessment assessment assessment
(n=88)
?::",z; — Personalized —
Instruction
5 minutes 5 minutes 13 minutes
;/ 4 repetitions, \ / K /

5 minutes each

FIGURE 3. Flow diagram. Eighty-eight students were randomly allocated into 3 intervention groups. Abbreviation: Al, artificial intelligence.
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TABLE 1. Metrics Assessed by the ICEMS in Hierarchical Order, and Their Corresponding Instructions '+

Metric

ICEMS Instruction

1. Healthy tissue injury risk

2. Bleeding risk

3. Instrument tip separation distance
4. High bipolar force application

5. Low bipolar force application

6. High aspirator force application

“Try to avoid damaging the healthy brain surrounding the tumor.”

“Careful control of bleeding will improve your performance.”

“Keeping your instruments closer together will improve your performance.”

“Try to decrease the amount of force you are applying with your bipolar.”

“You can improve your performance by applying more force with your bipolar.”
“Try to decrease the amount of force you are applying with your aspirator.”

Abbreviation: ICEMS, Intelligent Continuous Expertise Monitoring System.

The right column shows the instructions given fo group 1 and 2 upon metric error detection by the ICEMS. If the ICEMS identifies more than one error simulta-
neously, it is programmed to provide instruction on the metric higher in the hierarchy.

the NeuroVR recorded participant technical skill perfor-
mance data in 20-millisecond increments (50 recordings
per second; =20 ms), including rate of healthy tissue
removal (mm?/t), total volume of blood lost (mm?),
instrument tip separation distance in the 3D space
(mm), force applied with bipolar forceps (N), and force
applied with ultrasonic aspirator (N).”’ These perfor-
mance metrics were selected based on their relation to
the feedback instructions given during the session to
assess their effectiveness. The raw data were collected,
and an average was calculated for 4 of the 5 technical
skill performance metrics for each participant in each
repetition. Only the final value of total blood volume lost
was utilized for each repetition, rather than taking an
average. Al tutor-automated feedback provision and data
visualization were performed using MATLAB (The Math-
Works Inc., Natick, Massachusetts, USA) release 2024b.

Outcome Measures

The first coprimary outcome of this study was the num-
ber of instructions that trainees received in total and for
each ICEMS metric during each of the formative practice
subpial resection scenarios. The second coprimary out-
come was trainee technical skill performance during the
practice scenarios and realistic scenario, measured using
the 5 performance metrics recorded by the NeuroVR.

Statistical Analysis

Between- and within-group comparisons of the mean
number of feedback instructions received over the sec-
ond to fifth repetitions of the practice resection scenario
were conducted using generalized linear mixed (GLMM)
Poisson regression models for count data. Model assump-
tions and the presence of possible outliers or influential
observations were investigated using graphical analyses
of simulated residuals. Posthoc pairwise comparisons
were adjusted using the Siddk method for between-
group differences and the Bonferroni correction for
within-group differences. Results are reported as

incidence rate ratios ARR) and 95% confidence intervals
(CD.

Between-group comparisons of the mean values of the
technical skill performance metrics at each repetition of
the practice resection scenario were conducted using a
two-way mixed model analysis of variance (ANOVA).
Repeated measures ANOVA was used to investigate
within-group differences of the mean values of the tech-
nical skill performance metrics at each repetition of the
practice resection scenario. One-way ANOVA was used
to compare the mean values of each technical skill per-
formance metric in the realistic resection scenario.
Assumption of errors of ANOVA models, including nor-
mality, homogeneity of variance, and the presence of
possible outliers or influential observations were
assessed by graphical examination of model residuals.
Posthoc pairwise comparisons of mean differences were
adjusted using the Siddk method for between-group dif-
ferences and the Bonferroni correction for within-group
differences. When model residuals did not show evi-
dence of having a Normal (Gaussian) distribution, a natu-
ral logarithmic transformation of the values was used as
the model outcome to stabilize the variability. A robust
linear mixed model approach to the ANOVA was used
when the assumption of homogeneity of variance or
residuals was violated. In cases where the normality or
homogeneity of variance assumptions were drastically
violated, we used the Kruskal-Wallis test at each rep-
etition for between-group analysis, followed by
Dunn’s test with Bonferroni correction for multiple
comparisons, and the Friedman test was used for
within-group analysis, followed by the Nemenyi test.
Results are reported as estimated mean differences
and 95% CI and, in cases where a log transformation
was used, as estimated ratios of geometric means
and 95% CIL

Data analysis was performed using R Statistical Soft-
ware (v4.3.3; R Core Team 2024)°' from February to
May 2025. All codes were written by the authors.
ANOVAs and Poisson GLMM were implemented using
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TABLE 2. Demographic Characteristics of Included Study Participants

Group 1 Group 2

Al tutor Scripted human
instruction instruction
(n=30) (n=29)

Group 3
Al-augmented
personalized
instruction
(n=28)

All Participants
(n=87)

Age, mean =+ SD (range) 21.8+2.4(1827) 22.6+4.4(18-38)

Sex
Female 18 16
Male 12 13
Prefer not to say 0 0
Gender
Woman 18 16
Man 12 13
Prefer not to say 0 0

Undergraduate medical
training level

Preparatory 9 8
First 15 14
Second 6 7
Institution
McGill University 11 15
Université de Montréal 12 7
Université de Sherbrooke 4 6
Université Laval 3 1
Handedness
Right 28 25
Left 2 3
Ambidextrous 0 1
Interest in pursuing surgery, 4 (2-5) 4.1 (2-5)
mean (range)’
Completed surgical rotation/
clerkship/shadowing
Yes 12 10
No 18 19
Plays video games
Yes 8 9
No 22 20
Played musical instruments
in last 5 years
Yes 9 9
No 21 20
Participated in activities that
require hand dexterity
Yes 8 12
No 22 17
Previously used VR surgical
simulation
Yes 1 2
No 29 27

23.9+ 4.8 (19-37)

12
15
1

12
15
1

227 +2.4(18-38)

46
40
1

46
40
1

25
42
20

40
25
17
5

77
9
1
4 (2-5)

33
54

30
57

31
56

31
56

Abbreviations: Al, arfificial intelligence; VR, virtual reality.
*Rated on a 5-point Likert scale, with 1 indicating less inferest and 5 indicating more inferest.

the lme4 °° and glmmTMB > R packages, respectively. RESULTS
The GLMM analysis of simulated residuals was imple-
mented using the DHARMa R package.“ The robust lin-
ear mixed model approach to ANOVA was done using

the robustlmm R package.’”
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randomized to one of 3 groups. There were 31 students
in the Al tutor instruction group (group 1), 29 in the
scripted human instruction group (group 2), and 28 in
the Al-augmented personalized instruction group
(group 3). Due to technical issues that arose during the
simulation session, data from 1 participant in group
1 were excluded from the analysis. Data from 87 partici-
pants (46 [53%] women, 40 [46%] men, 1 [1%] unspeci-
fied; mean [SD] age, 22.7 [4.0] years) were available for
analysis, including 522 practice scenarios and 87 realistic
scenarios (Table 2).

Feedback Frequency Across Simulated Practice
Subpial Resections

All groups began receiving instructions in the second
repetition of the practice scenario. In total, over the sec-
ond to fifth repetitions, group 1 received 1464 instruc-
tions, group 2 received 1183 instructions, and group 3
received 728 instructions. Figure 4 outlines the number
of instructions received by the groups for each metric in
each repetition of the practice scenario where feedback

Al Tutor Instructlon

400 1

Number of Instructions

iiif

Repetltlon
Al-Augmented Personalized Instruction

400 f ' ' ‘ ' ]

200

100

Number of Instructions

300 ¢ 1

40T

Repetltlon

Number of Instructions

was given (repetitions 2 to 5). The incidence rates of
instructions for each metric can be found in Table 3.
Group 1 received significantly more instructions in total
compared to group 3 by the second repetition (IRR, 1.52
[95% CI, 1.03-2.23] instructions; p=0.03). Group 2
received significantly more feedback instructions in total
compared to group 3 by the third repetition of the prac-
tice scenario (IRR, 1.74 [95% CI, 1.15-2.63] instructions;
p=0.001) (Fig. 5A). Pertaining to bleeding risk instruc-
tions, group 1 received significantly more feedback com-
pared to group 3 in the second (IRR, 5.55 [95% CI, 1.22-
25.15] instructions; p = 0.01), fourth (IRR, 5.02 [95% CI,
1.09-23.19] instructions; p =0.03), and fifth (IRR, 8.20
[95% CI, 1.73-38.77] instructions; p = 0.001) repetitions,
and group 2 received significantly more feedback than
group 3 in the second (IRR, 4.89 [95% CI, 1.06-22.53]
instructions; p = 0.04) and fifth (RR, 6.81 [95% CI, 1.41-
32.80] instructions; p=0.006) repetitions (Fig. 50).
Group 1 received significantly more instructions relating
to high bipolar force than group 3 in the fourth
repetition of the practice scenario (IRR, 2.13 [95% CI,

Scripted Human Instruction

400 f ' ‘ ]
300 t o 24 gy .
260 g
200 | ]
100 ¢ 11 %9 b
0 1 1 1 1L
2 3 4 5
Repetition
ICEMS Metrics
I Tissue Injury Risk
[N Bleeding Risk

[ Instrument Tip Separation Distance
I High Bipolar Force

[ Low Bipolar Force

[ High Aspirator Force

FIGURE 4. Number of instructions that each group received for each ICEMS metric across the second to fifth repetitions of the practice scenario. Metrics are
color coded (see legend). X-axis represents the repetition number. Colored stacked bars represent the number of instructions for each ICEMS metric. Instructions
were given upon meiric error detection by the ICEMS. Tofal number of instructions are indicated in bold above each bar. Al, arificial intelligence; ICEMS,

Intelligent Confinuous Expertise Monitoring System.
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TABLE 3. Incidence Rates and Standard Errors of Instructions for & ICEMS Metrics Received During the Second to Fifth Repetitions of the

Practice Resection Scenario®

Group Incidence Rate (IR) [SE]
Healthy Bleeding Instrument  High Bipolar Low Bipolar High All Metrics
Tissue Injury Risk Tip Force Force Aspirator Combined
Risk Separation Force
Distance
Repetition 2
1 0.15[0.07] 0.88[0.28 1.03[0.22 3.24[0.50 0.59[0.15 3.84[0.47 12.81[1.18]
2 0.07 [0.04] 0.78[0.26 0.79[0.19 2.26[0.38 1.00[0.22 3.94[0.49 10.24 [0.96]
3 0.11[0.07] 0.16 [0.07 0.83[0.20 1.68[0.31 0.65[0.16 3.92[0.50 8.45[0.84]
Repetition 3
1 0.16[0.08] 0.85[0.27 1.00[0.22 2.2410.37 0.80[0.18 3.84[0.47 11.63[1.09]
2 0.07 [0.04] 0.84[0.28 0.68[0.17 2.20[0.37 0.81[0.19 3.81[0.48 9.83[0.93]
3 0.008 [0.009] 0.20[0.08 0.48[0.14 1.45[0.28 0.44[0.13 2.29[0.34 5.65[0.61]
Repetition 4
1 0.093[0.05] 0.75[0.24 1.00[0.22 2.64[0.42 1.12]0.23 3.32[0.42 11.56[1.08]
2 0.091[0.05] 0.67[0.23 0.71[0.18 1.87[0.33 1.14[0.24 3.55[0.45 9.38[0.90]
3 1 24E‘” 0.15[0.07 0.38[0.12 1.24[0.25 0.77[0.18 1.67[0.28 4.84[0.55]
[3.17E7]
Repetition 5
1 0.14]0.07] 0.99[0.32 0.95[0.21 2.64[0.42 0.85[0.19 4.14]0.50 12.58[1.16]
2 0.050[0.03] 0.83[0.27 0.58[0.15 1.76[0.31 0.67[0.16 3.17[0.42 8.30[0.81]
3 0.033[0.02] 0.12[0.06 0.35[0.11 1.30[0.26 0.44[0.13 1.67[0.28 4.55[0.52]

Abbreviation: ICEMS, Intelligent Continuous Expertise Monitoring Sysfem.

*Estimates are from the between-group statistical analyses of these ICEMS metrics.

1.03-4.39] instructions; p = 0.04) (Fig. 5E). By the fourth
repetition of the practice scenario, groups 1 and 2 both
received significantly more high aspirator force feedback
instructions than group 3 (IRR, 1.99 [95% CI, 1.10-3.61]
instructions; p=0.01; and IRR, 2.13 [95% CI, 1.17-3.87]
instructions; p =0.004, respectively) (Fig. 5G). Only
group 3 received significantly fewer instructions across
repetitions of the practice scenario. By the third repeti-
tion, this group received significantly fewer total instruc-
tions (RR, 1.50 [95% CI, 1.16-1.94] instructions;
p <0.001) and instructions relating to aspirator force
(RR, 1.71 [95% CI, 1.15-2.55] instructions; p = 0.002)
compared with the second repetition (Figs. 5A and G).

Technical Skill Performance Across Simulated
Practice Subpial Resections

Learning curves were assessed for the 5 technical skill
performance metrics. The estimates for each metric ana-
lyzed using parametric statistical methods can be found
in Table 4. No statistically significant differences were
observed between the groups at baseline performance
(first repetition) in all 5 performance metrics. Dunn’s
tests with Bonferroni correction indicated that group 3
demonstrated a significantly lower rate of healthy tissue
removal compared to group 1 by the third (p=0.01)
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repetition of the practice scenario, and that group 3 had
significantly less bleeding than group 1 in the second
(p =0.02) and fourth (p =0.02) repetitions of the prac-
tice scenario (Figure 6A and B). In addition, a pairwise
test with Sidik adjustment indicated that group 3 dem-
onstrated a significantly lower instrument tip separation
distance by the second repetition of the practice sce-
nario compared with group 1 (mean ratio, 1.25 [95% CI,
1.05-1.50] mm; p =0.008) and compared with group 2
in the third (mean ratio, 1.20 [95% CI, 1.00-1.44] mm;
p =0.049) and fourth (mean ratio, 1.22 [95% CI, 1.02-
1.46] mm; p = 0.03) repetitions of the practice scenario.
This same statistical test found that group 2 had a signifi-
cantly lower instrument tip separation distance than
group 1 during the fifth repetition (mean ratio, 1.33
[95% CI, 1.11-1.59] mm; p < 0.001; Fig. 6C). No other
statistically significant differences were observed
between group 1 and 2 in the other performance met-
rics. A pairwise test with Siddk adjustment also indicated
that, by the third repetition, group 3 used significantly
less force with the ultrasonic aspirator than group 1
(mean ratio, 1.68 [95% CI, 1.23-2.31] N; p < 0.001) and
group 2 (mean ratio, 1.50 [95% CI, 1.09-2.06] N;
p =0.007; Fig. 6E). No statistically significant differences
were found between the groups in the force applied
using the bipolar forceps (p > 0.05), as indicated by a
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robust linear mixed model regression (Fig. 6D). Com-
pared to baseline performance, by the second repetition
of the practice scenario, group 1 significantly decreased
the distance between their instruments (mean differ-
ence, 2.28 [95% CI, 0.57-3.99] mm; p = 0.001). This find-
ing was also observed for group 2 (mean difference,
3.47 [95% CI, 2.30-4.64] mm; p < 0.001) and group 3
(mean ratio, 1.55 [95% CI, 1.36-1.77] mm; p < 0.001;
Fig. 6C), as indicated by a pairwise test with Bonferroni
adjustment. This same test found that, compared to base-
line performance, groups 1, 2, and 3 significantly low-
ered the force applied with the bipolar forceps (mean
difference, 0.08 [95% CI, 0.02-0.13] N; p < 0.001; mean

or that group. Al, artificial intelligence; ICEMS, Intelligent Continuous Expertise Monitoring

difference, 0.13 [95% CI, 0.07-0.18] N; p < 0.001; and
mean ratio, 1.38 [95% CI, 1.13-1.67] N; p < 0.001,
respectively) by the second repetition (Fig. 6D). Neme-
nyi test showed that group 3 also achieved a significantly
lower rate of healthy tissue removal (p < 0.001) and vol-
ume of blood lost (p < 0.001) by the second repetition
compared to baseline, and a pairwise test with Bonfer-
roni correction found that this group demonstrated a
lower force applied with the ultrasonic aspirator (mean
difference, 0.05 [95% CI, 0.02-0.07] N; p < 0.001) by the
second repetition compared to baseline (Figs. 6A, B and
E). Other improvements from baseline performance and
between specific trials are shown in Figure 6.
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TABLE 4. Estimated Geometric Means and Standard Errors of Technical Skill Performance Metrics Over 6 Repetitions of the Practice Resec-

fion Scenario*

Group

Estimated Geometric Mean (EGM) [SE]

Instrument Tip Separation

Force Applied With Bipolar

Force Applied With Ultrasonic

Distance (mm) Forceps (N) Aspirator (N)
Repetition 1 ‘
1 11.79[0.61] 0.43[0.02]" 0.16[0.01
2 11.84[0.63] 0.43 [0.02]° 0.15[0.01
3 11.76 [0.63] 0.44[0.02]° 0.16[0.01
Repetition 2 ‘
1 9.52[0.50 0.36[0.02]° 0.13[0.01
2 8.33[0.44 0.30[0.02]" 0.11[0.01
3 7.59[0.41 0.32[0.02]° 0.11[0.01
Repetition 3 ,
1 8.84[0.46 0.33[0.02]° 0.13[0.01
2 8.20[0.43 0.31[0.02]" 0.12[0.01
3 6.84[0.37 0.27 [0.02]° 0.08 [0.01
Repetition 4 ‘
1 8.78[0.46 0.33[0.02]° 0.13[0.01
2 7.69[0.41 0.29[0.02]" 0.11[0.01
3 6.32[0.34 0.26 [0.02]" 0.07 [0.01
Repetition 5 ‘
1 9.87[0.51 0.36[0.02]° 0.14[0.01]
2 7.42[0.39 0.28 [0.02] 0.11[0.01]
3 6.62[0.36 0.27[0.02]"° 0.07[0.01]
Repetition 6
1 9.82[0.51 0.37[0.02]° 0.14[0.01]
2 8.32[0.44 0.30[0.02]° 0.12[0.01]
3 7.10[0.38 0.28 [0.02]" 0.08 [0.01]

*Only metrics analyzed using parametric statistical methods are included. Estimates are from the between-group statistical analyses of these technical skill

performance merics.
SEstimated marginal mean [EMM) [SE].

Technical Skill Transfer to the Simulated
Realistic Subpial Resection

The estimates for each metric analyzed using parametric
statistical methods can be found in Table 5. Following
the completion of the realistic scenario, a pairwise test
with Sidik adjustment indicated that group 3 applied sig-
nificantly less force with the ultrasonic aspirator than
group 1 (mean difference, 0.04 [95% CI, 0.01-0.07] N;
p =0.01) (Figure 7E). No other statistically significant dif-
ferences were found between the groups.

DISCUSSION

To the authors’ knowledge, this cohort study is the first
investigation to demonstrate the pedagogical impact of
Al-augmented personalized instruction on the frequency
of feedback instructions and on the results of these spe-
cific surgical instructions on trainee surgical perfor-
mance. A previous RCT used ICEMS scores to explore
the effect of the 3 different instructional methods

Journal of Surgical Education ¢ Volume 82 /Number |

utilized in this investigation on trainee skill acquisition
and skill transfer.”' This study builds on this investiga-
tion, focusing on the frequency of instructions provided
and their impact on changes in technical skill.
Consistent with our first hypothesis, participants
receiving Al-augmented personalized instruction
received fewer total instructions compared with Al
tutor and scripted human instruction. Since feedback
was only provided when the ICEMS detected an
error, a reduced feedback frequency can be associ-
ated with trainees making fewer performance errors.
Thus, fewer feedback instructions suggests that Al-
augmented instructions may be more comprehensible
and provide more clarity to trainees to understand
how to correct errors in their performance. In the
second repetition, when trainees first began receiving
feedback, the Al-augmented personalized instruction
group received significantly fewer instructions com-
pared to those trained by the Al tutor, providing evi-
dence for this methodology’s immediate efficacy for
teaching trainees how to correct errors. This trainee
group was the only 1 to receive significantly fewer

1 ® November 2025 11
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total instructions throughout the session. This finding
is consistent with the concept that personalized
instructions provided sufficient context to be action-
able in real time, as this group consistently had fewer
errors in performance.

The Al-augmented personalized instruction group had
significantly lower values compared to the Al tutor
instruction group for both risk metrics assessed and two
of the 3 coaching metrics, consistent with our second
hypothesis. Except for instructions pertaining to bipolar
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TABLE 5. Estimated Marginal Means and Standard Errors of Technical Skill Performance Metrics During the Realistic Resection Scenario

1

Group Estimated Marginal Mean (EMM) [SE]
Instrument Tip Separation Force Applied With Bipolar Force Applied With Ultrasonic
Distance (mm) Forceps (N) Aspirator (N)

1 15.51[1.28] 0.40 [0.02] 0.12[0.01]

2 13.92[1.30] 0.34[0.02] 0.11[0.01]

3 12.16 [1.32] 0.34 [0.02] 0.08[0.01]

*Only metrics analyzed using parametric statistical methods are included. Estimates are from the between-group statistical analyses of these technical skill

performance metrics.

force, all the instructions given directed participants to
decrease the technical skill performance metric values
(Table 1). Thus, achieving lower values in these metrics
suggests a better understanding of the feedback instruc-
tions. The absence of significant differences in the bipo-
lar force applied may be attributable to participants
receiving 2 instructions for this metric — 1 to increase
and another to decrease the force applied with the bipo-
lar forceps throughout the session. This may have
allowed participants in all groups to learn the ideal
amount of force application with this instrument.
Employing a similar methodology for teaching the other
metrics, where trainees are made aware of appropriate
changes to performance as much as they are made aware
of errors, has proven beneficial for surgical skill acquisi-
tion and may be an avenue to explore in future studies
involving the ICEMS.*®

The scripted human instruction group did not consis-
tently receive fewer instructions or exhibit significantly
better technical skill performance compared with the Al
tutor instruction group. These groups received instruc-
tions using identical wording (Table 1), suggesting that
the instructions programmed into the ICEMS may not
provide sufficient information to allow trainees to learn
to consistently correct errors. This is further supported
by the Al-augmented personalized instruction group’s
fewer instructions received and outperformance of both
other groups in several metrics. Investigations into the
instructions that elicited the most appropriate changes
in performance are presently being conducted using a
series of Large Language Models (LLMs) to further opti-
mize both the ICEMS and human expert instructions to
enhance performance outcomes.”’

The results indicate that correcting performance relat-
ing to a high amount of force applied with the ultrasonic
aspirator may be most effectively accomplished with AI-
augmented instructions. This group received fewer
instructions for this metric and outperformed both other
groups during the summative assessment in repetition 6,
and group 1 during the realistic scenario by using signifi-
cantly less force. Studies focused on exploring the utility

of LLMs to understand the reasons for the success of Al-
augmented personalized instructions for this particular
metric may further enhance the actionable vocabulary of
the ICEMS.

These findings have supported the hypothesis that
providing skilled instructors with Al-generated error
data to facilitate the provision of personalized, contin-
uous, contextualized feedback improves learning in a
simulated surgical environment. Further research is
required to determine whether these findings can be
generalized to more realistic surgical settings, and
such studies using an ex vivo animal model are cur-
rently underway.m’41 This cohort study demonstrates
the potential for Al-augmented personalized instruc-
tion to optimize trainee assessment, teaching, and
error mitigation in the operating room environment,
helping to lay the foundations for the development of
future intelligent human operating rooms powered by
Al technology.

LIMITATIONS

Intelligent tutoring systems cannot completely replicate
the communication interchange between a surgical edu-
cator and a learner in complex human operating set-
tings.*” This study was carried out using a small sample
of medical students in their preparatory, first, or second
year, and findings cannot be generalized to senior medi-
cal students or surgical residents. However, the results
of a series of simulation studies has demonstrated that
using medical students with minimal surgical experience
has provided valuable insights.'"'*""?° Investigations
using neurosurgical residents, fellows, and neurosur-
geons are in preparation involving ex vivo models, but
the limited number of participants available may limit
the ability of these studies to achieve sufficient power to
detect statistically significant differences unless multiple
teaching centers are involved.
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CONCLUSION

This cross-sectional cohort study demonstrated that arti-
ficial intelligence-augmented personalized instruction
resulted in less frequent feedback and improved surgical
technical skills.

These results continue to outline the importance of
human educator engagement and the critical role
they play in developing intelligent tutoring systems
for surgical education applicable to the human oper-
ating room.
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