GPU-accelerated surgery simulation for opening a brain fissure

Robomech Journal. dx.doi.org/10.1186/s40648-015-0040-0

GPU-accelerated surgery simulation for opening a brain fissure

Kazuya Sase, Akira Fukuhara, Teppei Tsujita and Atsushi Konno

In neurosurgery, dissection and retraction are basic techniques for approaching the site of pathology. These techniques are carefully performed in order to avoid damage to nerve tissues or blood vessels. However, novice surgeons cannot train in such techniques using the haptic cues of existing training systems. This paper proposes a real-time simulation scheme for training in dissection and retraction when opening a brain fissure, which is a procedure for creating a working space before treating an affected area. In this procedure, spatulas are commonly used to perform blunt dissection and brain tissue retraction. In this study, the interaction between spatulas and soft tissues is modeled on the basis of a finite element method (FEM). The deformation of soft tissue is calculated according to a corotational FEM by considering geometrical nonlinearity and element inversion. A fracture is represented by removing tetrahedrons using a novel mesh modification algorithm in order to retain the manifold property of a tetrahedral mesh. Moreover, most parts of the FEM are implemented on a graphics processing unit (GPU). This paper focuses on parallel algorithms for matrix assembly and matrix rearrangement related to FEM procedures by considering a sparse-matrix storage format. Finally, two simulations are conducted. A blunt dissection simulation is conducted in real time (less than 20 ms for a time step) using a soft-tissue model having 4807 nodes and 19,600 elements. A brain retraction simulation is conducted using a brain hemisphere model having 8647 nodes and 32,639 elements with force feedback (less than 80 ms for a time step). These results show that the proposed method is effective in simulating dissection and retraction for opening a brain fissure.

KEYWORDS: Surgery simulation; Finite element method; GPU