Modelling of connective tissue damage for blunt dissection of brain tumor in neurosurgery simulation

Wenguo Hou, Peter X. Liu, Minhua Zheng

Computers in Biology and Medicine, Volume 120, May 2020

https://doi.org/10.1016/j.compbiomed.2020.103696

ABSTRACT – We introduce a new model for connective tissue damage in blunt dissection, which is a very important process in neurosurgery simulation. Specifically, the tool-tissue interaction between the instrument and connective tissue is incorporated into the model of connective tissue damage. This damage develops with the evolution criterion due to the effect of the external load. The tetrahedral mesh in the soft tissue model is removed for the representation of rupture as the damage accumulates to the threshold value. Analysis and experiments show that the connective tissue damage model provides stable, visually realistic results for the simulation of the connective tissue rupture process. The stiffness of the connective tissue decreases as the damage accumulates. The proposed model for connective tissue damage was incorporated into the development of a neurosurgery simulator, in which blunt dissection of a brain tumor was simulated. We introduce a new model for connective tissue damage in blunt dissection, which is a very important process in neurosurgery simulation. Specifically, the tool-tissue interaction between the instrument and connective tissue is incorporated into the model of connective tissue damage. This damage develops with the evolution criterion due to the effect of the external load. The tetrahedral mesh in the soft tissue model is removed for the representation of rupture as the damage accumulates to the threshold value. Analysis and experiments show that the connective tissue damage model provides stable, visually realistic results for the simulation of the connective tissue rupture process. The stiffness of the connective tissue decreases as the damage accumulates. The proposed model for connective tissue damage was incorporated into the development of a neurosurgery simulator, in which blunt dissection of a brain tumor was simulated.